助手标题
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
共[24]条 当前为第21条到40条
 

相关语句
未完全匹配句对
    The purpose of this thesis is to study dissipativity of delay functional differential dynamical systems and their corresponding numerical dissipativity of one-leg θ-method.
    本学位论文主要研究滞时泛函微分动力系统的耗散性,以及相应的单支θ-方法的数值耗散性。
    We first establish a sufficient condition under which a class of delay functional differential dynamical systems is dissipative. Then we construct a one-leg θ-method to solve such dissipative dynamical systems and prove that the one-leg θ-method is dissipative if θ ∈ [1/2, 1].
    首先,对于一类一般的滞时泛函微分动力系统,给出了一个滞时泛函微分动力系统耗散的充分条件,然后构建了一个单支θ-方法来求解此类耗散动力系统,并证明当θ∈[1/2,1]时单支θ-方法是数值耗散的。
    We consider another class of delay functional differential dynamical systems and establish a sufficient condition under which such delay functional differential dynamical systems are dissipative.
    其次,对于另一类滞时泛函微分动力系统,论文从不同于前的角度给出了动力系统耗散的充分条件,并构建了求解此耗散动力系统的单支θ-方法,同时证明当θ=1时单支θ-方法是数值耗散的。
    The purpose of this thesis is to study dissipativity property of Runge-Kutta methods solving delay differential equations.
    本学位论文旨在研究Runge-Kutta方法求解滞时微分动力系统的数值耗散性。 主要内容包括:
    A sufficient condition is given to ensure that a class of linear delay differential equations is dissipative. We then apply Runge-Kutta methods combined with Lagrange interpolation procedure to these dissipative equations and investigate the numerical dissipativity of numerical solution.
    首先给出线性变系数滞时微分动力系统耗散的一个充分条件,并讨论了将Runge-Kutta方法结合Lagrange插值求解耗散动力系统的数值耗散性。
    We study the numerical dissipativity of (k, l)-algebraically stable Runge-Kutta methods and give some numerical examples to demonstrate our theory.
    在已有的非线性滞时微分动力系统耗散的条件下,讨论了(k,l)-代数稳定的Runge-Kutta方法求解此耗散系统的数值耗散性。 最后同样给出数值例子验证我们的结论。
    It can avoid excessive numerical diffusion and difficulty in capturing moving boundaries in Euler coordinates, it also can avoid severe gird deformation in the Lagrange coordinates, yet it remains sharp resolution of slip lines.
    统一坐标既可以避免Euler坐标法的过度数值耗散和动边界捕捉困难,也可以避免Lagrange坐标法的严重网格变形,并且能保证接触间断处较高的分辨率。
    In this algorithm we introduce a free parameter δ, which may control the decay of amplitude and effectively filter the high mode response from the solution. When δ= 1/6, the basic equations of the algorithm have no numerical dissipation.
    本算法引入一个自由参数δ,用以控制振幅的衰减,致使解中的高振型响应,可以有效地被滤掉,当δ=1/6时,可使算法的原始方程没有数值耗散
    It can be concluded that the numerical damping effect in computation is insignificant,the modified characteristics procedure for treatment of the convection has more accuracy than the upwind scheme.
    通过数值解与精确解的比较,表明本方法的数值耗散很小,用改型特征线方法处理对流算子较迎风离散格式有更高的精度; 两种处理对流算子的方法都没有伪振荡现象发生。
    It is shown that cubic spline method is effective for restraining numerical dispersion in numerical simulation of hydrodynamic dispersion equations with radioactive decay.
    结果表明,三次样条方法在带有放射性衰变的水动力弥散方程的数值计算中,对抑制数值耗散是一种有效的方法。
    To solve numerical dissipation and dispersion in numerical solution of convection-diffuson equation, a numerical procedure for simulating the convection-diffusion movement has been developed. The procedure is based on a governing equation which can be divided into Euler type convection equation and Lagrange type diffusion equation.
    为解决对流—扩散型方程数值解中出现的数值耗散和数值弥散,本文通过质点导数概念,将物理方程分解为Euler形式下的对流型方程和Lagrange形式下的扩散型方程,采用特征线法和区域离散数值方法分别求解,二者合成即为对流一扩散运动的整体数值模拟过程。
    In this paper a new approach for desgining upwind type schemes-the charac-terizing-integral method and its applied skills are introduced. The method is simple, convenient and effective.
    本文介绍一种简单而又行之有效的顺风型格式——特征化积分格式的设计方法及应用技术,用这种方法设计的顺风型格式不受方程有型性的限制,容易推广,又能比较灵活地调节数值耗散性,使之适用不同的间断解的要求.
    The numerical dissipation and dispersion of Hybrid Finite Analytic Method are investigated by using four-point implicit scheme of HFAM.
    本文以混合有限分析4点隐格式为例,分析了这一格式的数值耗散及数值频散.
    It is found that the numerical dissipation is second order and the numerical dispersion is third order.
    得出该格式的数值耗散为二阶,数值频散为三阶.
    In order to reduce the numerical viscosities of TVD schemes and improve their resolution, this paper suggests a new TVD scheme of Harten form with less numerical dissipation. Numerical experiments show that such a TVD scheme is better than Harten TVD scheme [1] and modified Harten scheme (Harten-Yee TVD scheme [2] ) in simulating boundary layer and vortices.
    为了减小TVD格式的数值粘性,提高TVD格式的分辨度,提出了一种 具有较小数值耗散的Harten型TVD格式.数值模拟结果表明,这种Harten型TVD 格式比原来的Harten格式[1]及其改进形式Harten—Yee[2]的TVD格式能更好地模拟 出边界层及涡流。
    The completed calculations of the flows in a dust-gas shock tube show that the quasicharacteristic method has the advantages of high precision and small numerical dissipation and dispersion.
    含灰气体激波管流动的计算表明,类特征线法具有精度高、数值耗散和弥散小等优点
    The SOUCUP scheme of Zhu and Rodi is used to decrease thenumerical dispersion.
    为了减少数值耗散,在能量方程求解中采用了Zhu和Rodi提出的SOUCUP格式。
    Here the LF scheme is a specified form of B-grid center difinite scheme used in MM4. We also simulate a heavy rain case of June 19, 1982 with the model′s water transport options of B-grid center scheme, Upstream scheme and Prather scheme, respectively.
    这些格式都是正定的,在理想风场的数值实验中几乎无数值耗散,无计算频散。 我们在B网格中央差格式(原MM4中的格式)、Upstream格式和Prather格式等模式选择项下,对1982年6月的一次梅雨期暴雨过程进行了数值对比实验。
    The paper also presents the basic ideas on reconstruction of numerical solution distribution,based on the proposed TVD requirements,to reduce numerical dissipation and improve resolution of the contact discontinuities and head/tail of rarefaction waves.
    同时提出了基于TVD需求再构数值解分布,以降低数值耗散从而提高接触面及膨胀波头/波尾分辨率的基本思路。
    An expression for the numerical damping and dispersion of panel method calculating ship wave-making problem is derived from Fourier analysis, It can be used to analyse not only the order of magnitude of er-rors concerned and their coupling effects in calculating ship wavemaking problem but also the errors in calculating other steady free-surface flows by panel method in principle.
    本文利用Fourier分析导出了船舶兴波问题面元法计算中的数值耗散及数值色散误差表达式. 该公式不仅可用于从量级上分析船波问题计算的有关误差及其耦合影响,原则上亦可用于其它具有自由表面的稳态流动问题面元法计算的误差分析.
 

首页上一页12下一页尾页 

 
CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社