全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多

 共[7]条 当前为第1条到7条

 mixed type dual Mixed type dual for generalized fractional programming 广义分式规划的混合型对偶 A MIXED TYPE DUAL FOR GENERALIZDE FRACTIONAL PROGRAMMING 广义分式规划的一个混合型对偶 In Section 5, Mond-Weir type dual and Wolfe type dual are introduced and the mixed type dual proposed by Xu Zengkun is discussed. 第五节介绍了Mond-Weir对偶和Wolfe对偶，并重点讨论了徐增坤教授提出的混合型对偶。 Sufficient condition and mixed type dual were pr esented for the generalized fractional programming under (F,ρ)-convexity a ssumptions. The results about weak duality, strong duality and strictly reverse duality were also obtained under more suitable conditions. 在函数 (F ,ρ) 凸性假设下 ,给出了广义分式规划的最优性充分条件及其混合型对偶 ,并且在适当的条件下 ,给出了相应的弱对偶定理、强对偶定理 ,以及严格逆对偶定理 . This paper gives one mixed type dual problem for a class of nondifferentiable generalized fractional programmingproblems, and proves weak duality, strong duality, and strict converse duality theorems under the assumptions of generalized(F,ρ) -convexity. 给出了一类非可微广义分式规划的一个混合型对偶。 在广义(F、ρ)-凸性条件下,证明了弱对偶定理、强对偶定理及严格逆对偶定理。 A sufficient condition and a mixed type dual are presented for the generalized fractional programming only under (F,ρ)-convexity assumptions. The results about weak duality, strong duality and strictly reverse duality are also obtained under more suitable conditions. 在函数 (F ,ρ)_凸性假设下 ,给出了广义分式规划的一个最优性充分条件和一个混合型对偶 ,并且在适当的条件下 ,给出了相应的弱对偶定理、强对偶定理 ,以及严格逆对偶定理 . In this paper, we give a mixed type dual problem for a class of nondifferentiable generalized fractional programming problems with the norm \\$‖Bx‖\-p\\$ in the objective function involves, and present weak duality, strong duality, and strict converse duality theorems under the assumptions of generalized \\$(F, ρ)\|\\$convexity. 对一类目标函数含范数‖ Bx‖p 的非可微广义分式规划 ,提出了一个混合型对偶 ,并且在广义 (F,ρ) -凸性条件下 ,给出了相应的弱对偶定理、强对偶定理及严格逆对偶定理

 CNKI主页 |  设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
2008 CNKI－中国知网

2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社