助手标题
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
共[17]条 当前为第1条到17条
 

相关语句
未完全匹配句对
    In ((Actuarial Mathematics)) N.
    N.
    A Study of the Ruin Probability in the Double Binomial ModelProcessing over one hundred years history in other countries, the theory of risk model is an important contents of insurance actuarial science. In 1986, the Northern American Committee published Actuarial Mathematics, edited by Newton L. Bower, Hans U. Gerber, James C.
    风险模型理论, 是保险精算数学中重要的研究内容, 在国外已经有上百年的研究历史, 早在1986年, 北美精算学会出版的由Newton L. Bower, Hans U. Gerber, James C.
    Risk theory is one of the most important parts in the actuarial mathematics.
    风险理论,作为保险或精算数学的一个重要组成部分,主要是以保险公司的风险业务为主要研究对象。
    Martingale methods in actuarial mathematics
    精算数学中的鞅方法(英文)
    The Actuarial Mathematics Of Net Single Premium in Random Discount Factor
    随机贴现因子下的纯保费精算
    Then it makes an analysis of the impact of deflation on the supply and demand of life insurance industry, using actuarial mathematics and mortality table.
    然后针对全球及我国出现的通货紧缩现象,确定了通货紧缩的出现,并对近年来逐渐形成社会总需求小于社会总供给以至出现通货紧缩的局面的主要原因做了分析;
    Risk theory, as a part of insurance or actuarial mathematics, deals with stochastic models of an insurance business and studies the probability of ruin.
    风险理论是经营者或决策者对风险进行定量分析和预测的一般理论,但经典风险模型及其拓广模型为描述单一险种的风险。
    In the category of the insurance mathematics, which is also called actuarial mathematics, ruin theory is the core content of the risk theory. As the quantity index to evaluate the repayment ability of the insurance company, ruin probability and it's generalization—Gerber-Shiu function stand the important place in ruin theory.
    在保险数学,也称为精算数学(actuarial mathematics)的范畴内,破产论是风险论的核心内容,而作为评价保险公司偿付能力的数量指标——破产概率及其推广Gerber-Shiu函数在破产论中占有很重要的地位。 本文对相关保险风险模型,有界风险模型及广义双Poisson风险模型进行了研究,主要解决了下面几个问题:
    Risk theory, as a part of insurance or actuarial mathematics, deals with stochastic models of an insurance business and the ruin probability.
    风险理论,作为保险或精算数学的一个重要部分,研究对象是保险业务的随机模型和破产概率。
    Risk theory, as a part of insurance or actuarial mathematics , deals with stochastic models of an insurance business and studies the probability of ruin .
    风险理论,作为保险或精算数学的一个重要部分,研究对象是保险业务的随机模型和破产概率。
    The article does the thorough research to the life insurance actuarical method,based on the probability,the mathematics statistic,the actuarial mathematics,the risk theory,the interest theory,the insurance science,the smoothing mathematics ,the life science, the operational research and the psychology.
    运用概率论及数理统计、精算数学、风险理论、利息理论、保险学、修匀数学、生命科学、运筹学、心理学等学科对寿险精算方法做了深入的研究,构建了多元生命函数保险模型。
    Risk theory, as an important subject of the actuarial mathematics,has been developed for a hundred years;
    风险理论作为精算数学中的一个重要课题,已经经历了百年的发展; 近年来,不少学者专家都使用随机游动来研究风险理论。
    In actuarial mathematics, ruin theory is the core in risk theory.
    在保险数学中,破产论是风险论的核心内容。
    In insurance mathematics, also called actuarial mathematics, ruin theory is the main concept of the risk theory. Also it is one of the popular topics of the risk theory.
    在保险数学,也称为精算数学的范畴内,破产理论是现代风险理论的核心内容,也是当前风险理论研究的热点。
    Risk theory is a focus of actuarial mathematics, it has developed promptly in recent ten years.
    风险理论是当前精算界和数学界及保险业研究的热门课题。
    Basing on the historical development of actuarial mathematics, this paper gives a survey of the three mathematical models in the researches for personal insurance by means of life insurance as a representative,and describes the present situation and future of the model researches. This is a reference for actuaries.
    本文以保险数学的历史发展为背景,以生命保险为代表,论述了人身保险研究的三种数学模型,分析了模型研究和开发的现状,可以为我国人身保险系统模型的建立提供参考。
    Based on the historical development of actuarial mathematics, this paper gives a survey of the follow-ing three mathematical models in the researches for life insurance system: (a) the classical deterministic mod-el, (b) the risk model, (c) the probabilistic model.
    本文以保险统计数学的发展历史为背景,依层次地论述了寿险系统研究的三类数学模型:(1)古典确定性模型; (2)风险性模型;
 

首页上一页1下一页尾页 

 
CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社