助手标题
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
共[31]条 当前为第1条到20条
 

相关语句
bayes estimate
    Bayes Estimate of Reliability Growth for r/N(G) System Based on Binomial Sampling
    二项抽样模型下r/N(G)系统可靠性增长的Bayes估计
    Bayes Estimate of Reliability of Exponential Units under Constant Stress Accelerating Life Testing
    恒定应力加速寿命试验指数部件可靠性的Bayes估计
    Bayes Estimate of the Survival Rate of Products Subjected to Accelerated Life Testing under Constant Stress
    恒定应力加速寿命试验下产品生存率的Bayes估计
    Bayes Estimate for the Reliability Growth of a r/N(G)System with Negative Binomial Sampling
    负二项抽样下r/N(G)系统可靠性增长的Bayes估计
    Robot Tactile Sensor Signal Data Fusion Based Bayes Estimate
    基于Bayes估计的机器人触觉传感器信号数据融合
    The Farither Study and Pitman Superiority of Bayes Estimate
    Bayes估计的进一步研究及其Pitman最优性
    Bayes Estimate Method of the Foremost Trajectory Optical Measurement Data
    初段弹道光测数据的Bayes估计方法
    n this paper,the empirical Bayes estimate of the parameter of uniform distribution family is introduced and for the absolute error loss its asymptotically optimal property is proved with respect to the prior distribution family(1).
    在均匀分布场合,文献“均匀分布族参数在绝对误差损失下的渐近最优经验Bayes估计”构造了一类绝对值损失下的经验Bayes估计,并证明了它的渐近最优性,在类似于文献“均匀分布族参数在绝对误差损失下的渐近最优经验Bayes估计”的条件下,构造了一类与其不同的经验Bayes估计,并用与其不同的方法证明了估计的渐近最优性。
    The Bayes estimate of H 0 is 61 6< H 0<66 8(km·s -1 ·Mpc -1 ), with 68 3% confidence and the universal age derived by H 0 is (15±1)×10 9 a, which is consistent with the value derived by spherical cluster (15±3)×10 9 a.
    在 68.3%置信水平上得到的 H0 的 Bayes估计为 61.6<H0 <66.8( km· s-1· Mpc-1) ,由之导出的宇宙年龄约 ( 15± 1)× 10 9a,与利用球状星团测龄的结果 ( 15± 3)× 10 9a相洽
    ANALYSIS AND IMPROVEMENT OF SOME BAYES ESTIMATE FOR THE MAXIMUM RANGE OF A MISSILE
    导弹最大射程Bayes估计的分析和改进
    A basic problem of Empirical Bayes estimate in theoretical research is to look for suitable Empirical Bayes estimation and to prove it to be asymptotic optimal.
    经验Bayes估计理论研究的一个基本问题是构造合宜的EB估计,并证明其渐进最优性。
    In this thesis, the Empirical Bayes estimations and multiple Empirical Bayes estimations of success probability theta of Boinomial distribution were given out by moment estimate when theta followed different priors, and the superiority of these estimations was simply discussed. With analog computation some of these estimates was found to be superior to the linear Empirical Bayes estimate given out by Robbins and these estimats were proved to be strong consistent and asymptotic optimal(a.o.)
    在本文里,我们利用矩估计方法,对二项分布中成功率θ服从不同的先验分布和多层先验分布时,分别给出了成功率θ的相应的经验Bayes估计和多层先验的经验Bayes估计,并初步讨论了这些估计的优良性:模拟计算之后,我们发现这些估计当中的有些估计在均方误差意义下要优于Robbins给出的线性经验Bayes估计;
    Through the data modification and models statistical analysis, the Bayes estimate of the reliability after modification is super to ML estimate;
    通过数据修正及模型统计分析,得到了修正后可靠度Bayes估计较优;
    The paper first introduces NCD, explains the necessity of this system and its three important contents and then introduces detailedly the best NCD on the theory based on Bayes estimate,supplys the theorical foundation for the selection of the appraisal indexs.
    之后详细介绍了以Bayes估计为基础的理论上的最优无赔款优待制度,为后文评价指标的选取提供了理论依据; 在此基础上,对现行主要无赔款优待制度进行了分析,尤其是对我国无赔款优待制度进行了具体分析,并基于优劣性对其进行了评价,为后文制度设计提供了参考的蓝本;
    This paper deals with Bayes estimate of reliability growth for r/N (G) system based on binomial sampling. The survival probability R of the units possesses a priori negative logarithmic gamma-distributionor beta-distribution. The results corresponding to U (0. 1) or noninformetive prior situation can be deduced as special applications The important results are listed in theorem 2, 3 and 4.
    本文介绍在二项抽样模型下,部件可靠概率R带有验前Beta分布、验前负对数Gamma分布及其特殊情况验前U(0.1)分布和无信息验前分布,对r/N(G)系统的可靠性增长作出Bayes估计,主要结果有定理2、3、4。
    This paper deals with parammetric Bayes estimate of trinomial distribution with growing reliabiliy. With the assumption that prior probability distribution being beta-distribution or negative logarithmic gamma-distribution,the important results are summarized to be theorems 1 and 2.
    本文研究具有可靠性增长的三项分布概型的参数 Bayes 估计,在先验分布为 Beta 分布,负对数 Gama 分布下,得到的主要结果有定理1、2.
    For estimating the survival rate of products subjected to accelerated life testing under constant stress,this paper makes a Bayes estimate.
    本文介绍在恒定应力加速寿命试验下. 产品生存率的 Bayes 估计。
    The Bayes estimate was made for the reliability growth of a r/N(G) system with negative binomial sampling model. The estimate was made under the condition that the survival probability p of the units possess a prior negative logarithmic gamma distribution,beta distribution,or a prior U (0,1) distribution in special situation.
    本文讨论了在负二项抽样模型下,部件可靠概率,带有验前负对数 Gamma 分布、验前 Beta分布及其特殊情况验前 U(0,1)分布时,对 r/N(G)系统的可靠性增长作出 Bayes 估计.
    This paper deals with Bayes estimate of the parammeters in constant stress accelerated life testing on the occasion of exponential distribution. Assuming a priori distribution to be exponential beta- distribution,Bayes parammetric estimate in constant stress accelerated life testing is given under non- quadratic loss function. The whole process of applying the method is exemplified numerically.
    本文在先验分布为指数Beta分布场合下,给出了恒定应力加速寿命试验参数在非平方损失函数下的Bayes估计,通过一个数值例子并叙述了使用这种方法的全过程。
    Suppose that the distributed subscription certificates are numbered 1, 2, …, N,this paper gives the maximum likelihood estimate、 uniformly minimum variance unbiased estimate and Bayes estimate of the total disrtibuted amount of subscription certificates.
    利用发行的认购证有编号1,2,……,N,,本文通过随机抽取的几个认购证号码,给出了认购证发行总数的最大似然估计,一致最小方差无偏估计和Bayes估计
 

首页上一页12下一页尾页 

 
CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社