助手标题
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
共[12]条 当前为第1条到12条
 

相关语句
未完全匹配句对
    NLSMKdV Hierarchy of Equations that are Integrable and in the Hamiltonian Forms
    可积的与Hamilton形式的NLS-MKdV方程族
    The extended system can be written in the Hamilton from and its integrals can be obtained by analytical mechanics method.
    这个扩充系统可表为Hamilton形式,而其积分可用分析力学的方法来得到.
    The accuracy of these schemes is O(△t2p+ △x2q),p,q -positive integers.
    的Hamilton形式构造的显式蛙跳(Leap-Frog)格式,其精度为O(Δt~(2p)+Δx~(2q)),p,q为正整数.
    The multi-symplectic Hamiltonian formulation for nonlinear Improved Modified Boussinesq equation is considered,and the Preissman multi-symplectic integrator is deduced via implicit midpoint rule.
    考虑非线性Improved Modified Boussinesq方程的多辛Hamilton形式,并用隐式中点公式得到Preissman多辛积分.
    ON THE DYNAMICS OF THE GEOMAGNETIC SECULAR VARIATION:THE HAMILTONIAN STRUCTURE
    地球磁场长期变化动力学的Hamilton形式
    HAMILTONIAN FORMULATION OF THE GAUGE THEORY OF THE VIRASORO GROUP
    Virasoro规范理论的Hamilton形式
    The symplectic arithmetic is a kind of Arithmetic that can maintain the structure of the Hamiliton system's symplectic structure, and can obtain the answers from Hamilton's equation.
    辛算法是能够保持Hamilton系统辛结构的一种算法,可以用来求解Hamilton形式的深化方程。
    By imposing the periodic fixed point condition to the Backlund transformations(BTs) of the generalized nonlinear Schrodinger equation, a class of finite dimensional sysems are obtained. Their Hamiltonian structures and the integrability can be proved by using the r—matrix method.
    通过对广义非线性Schrodinger方程的Backlund变换加上周期固定点条件,得到了一组有限维系统,并用r-矩阵方法证明了它们的完全可积性和Hamilton形式
    This paper gives a structrual method of Hamiltonian forms of Kdb-type equations. The method is simple and universally applicable.
    本文给出了Kdv型方程的Hamilton形式的构造方法,这一方法是简单又普遍适用的。
    In this paper,a new scheme for computing non-isospectral Lax representationsof integrable equations is established.
    建立计算可积方程族非等谱Lax的新框架,适用于由一个递归算子在出的方程族与Hamilton形式的方程族。
    A 2+ 1 dimensional generalization of the KdV, MKdV and Sine-Gordan equation and their Hamiltonian structures are given.
    给出对应的Kdv方程及SineGordan方程的一种2+1维一般化,导出其Hamilton形式
    In the framework of the new Poisson bracket, all the first integrals of the KdV equation constitute an infinite dimensional Lie algebra. Then the necessary and sufficient conditions for identifying the first integrals are obtained. Finally,the method for finding first integrals of KdV equation is investigated.
    本文首先针对KdV方程的Hamilton形式,建立一种比较容易验证的新型Poisson括号和无穷维Lie代数.其次,研究KdV方程的Hamilton形式的第一积分与新型Poison括号的关系,得到判定第一积分的充分必要条件.最后,构造KdV方程的第一积分.
 

首页上一页1下一页尾页 

 
CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社