助手标题
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
共[22]条 当前为第21条到30条
 

相关语句
未完全匹配句对
    Eigenvalues for the A-proper mappings and the even A-proper mappings are studied in the paper.
    研究了A-proper映射和偶A-proper映射的固有值,得到了几个较好的结果.
    Utilizing the properties of A-proper,the paper study the existence of solution for some equations in a projected complete Menger PN-space.
    利用A-proper映射拓扑度的基本性质,在投影完备的M enger PN-空间中研究了一些方程解的存在性。
    This paper studies the generalized degree theory for uniform limits of multivalued L-A-proper mappings. And applicafions of the theory to multivalued L-pseudomonotone mappings is given.
    本文对集值L—A—Proper映射的一致极限建立了广义度理论,并给出该理论对集值L—伪单调映射的应用。
    It has been proved that the generalized degree formultivalued A—proper mappings which are of type(α)is singleton inte-ger and it is independent of injective schemes.
    证明了此类映射作为 A—proper映射时的广义度是单位整数且与内射格式的取法无关.
    The definition of multivalued L-A-proper mapping is given. Generalized degree theory for semili- near mapping L+N is established. According to this theory, the existence theo- rems for the solutions of some kinds of equations are obtained.
    1≤dimkerL≤+∞、R(L)=KerL~⊥、N 是一集值映射,定义了 N 为所谓集值 L-A-Proper 映射,对半线性映射 L+N 建立了广义拓扑度理论,用此度理论给出若干该类方程解的存在定理。
    First, definition has been given to the normal multivalued L-A-proper mappings. They are a special subclass of L-A-proper mapping in paper [6]. Then some related properties and responding homotopy invariace of generalized degree have been discussed, with the application of these theories, the fixed point theorems have been established for the class of the semilinear mappings connected with the bounded, demi-continuous and normal multivalued L-A-proper mappings.
    首先定义正常的集值L-A-proper映射,它们是[6]中L-A-proper映射的特殊子类,讨论与其有关的某些性质和相应的广义度的同伦不变性,应用这些理论对一类与有界dcmi-连续正常集值L-A-proper映射有关联的半线性映射建立了不动点定理。
    By using the A-proper mapping and the generalized degree theory,this paper investigates the existence of periodic solutions of nonlinear second-order differential equations.
    应用A-proper映射及广义拓扑度理论研究了一类二阶非线性微分方程周期解的存在性。
    Firstly, the existence of eigenelements in the boundary for the A-proper mappings is proved and the global structure of the eigenelements is given.
    文中首先证明了A-proper映射的固有元在边界上的存在性; 然后给出了A-proper映射固有元的整体结构;
    The existence of eigenelements for the even A-proper mappings is furtherly proved and the global characterization of eigenvalues for the even A- proper mappings by the vise of derivate operator is lastly given.
    还证明了偶A-proper映射固有值的存在性. 最后利用导算子给出了偶A-proper映射固有值的整体刻划.
    As an application, the generalized topological degree theory for generalized A-proper mappings and some famous fixed point theorems can be extended.
    作为广义Schauder基的应用,还推广了A-proper映射的广义拓扑度和一些著名的不动点定理。
 

首页上一页12下一页尾页 

 
CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社