助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   正交数组 的翻译结果: 查询用时:0.865秒
图标索引 在分类学科中查询
所有学科
计算机软件及计算机应用
自动化技术
更多类别查询

图标索引 历史查询
 

正交数组
相关语句
  orthogonal array
     Application of Orthogonal Array to the Object-Oriented Test
     正交数组技术在面向对象测试中的应用
短句来源
     Design Research of Cluster Level Test Case Based on TC Orthogonal Array
     基于TC正交数组的簇级测试用例设计研究
短句来源
     This paper has four sections: principle analysis, design, application and effects. All these are on cluster test cast design based on TC(Test Case) orthogonal array.
     本文包括了基于TC(Test Case)正交数组的簇级测试用例的设计的原理分析、设计、应用及其应用结果分析几个部分。 主要内容如下:
短句来源
     After an analyses on object-oriented test, research result of horizontal interactions and vertical inheritance test on cluster level, shortcomings on horizontal interactions, then we put forward a new method which can be used as a case-testing method on horizontal interactions on cluster level ---we call this method cluster level case-testing design method based on TC(Test Case) orthogonal array.
     在分析面向对象簇级测试的水平方向和垂直方向的研究成果及水平方向的研究成果的不足之后,进而提出了一种用于簇级测试水平方向的测试用例生成方法一基于TC正交数组的簇级测试用例设计方法。
短句来源
     Finally, we use TC orthogonal array method to produce relatively fewer test cases with broaden coverage.
     最后,利用TC正交数组为簇级测试产生覆盖率广、相对少的测试用例。
短句来源
  orthogonal arrays
     Orthogonal arrays technology has been using widely in trial design,but not in the test case design of software development. In order to make orthogonal arrays to be used more easily in software test case design,a new orthogonal array-TC orthogonal arrays has been put forward,and has good effect on the test case design of bank rechargeable system.
     正交数组技术在试验设计中起着重要的作用,但在软件测试用例设计过程中,却未得到广泛应用,为了将正交数组技术应用于软件测试用例的设计,论文提出了适用于软件测试用例设计的正交数组——TC正交数组,并将其应用于银行充值系统测试用例的设计,取得了较理想的效果。
短句来源
     QUASI-PHYSICAL AND QUASI-SOCIOLOGICAL ALGORITHMS FOR SOLVING THE PROBLEMS OF ORTHOGONAL ARRAYS
     求解正交数组问题的拟物拟人算法
短句来源
     Design of Bank Rechargeable System Test Case Based on TC Orthogonal Arrays
     TC正交数组设计及其应用——在银行充值系统测试用例设计中的应用
短句来源
     It is hoped that this method can produce many new orthogonal arrays after further development.
     希望该算法经过进一步发展后将能设计出许多新的正交数组
短句来源
     This article puts forward the application method and steps about how to apply orthogonal arrays technology to the Object-Oriented test according to the request of Object-Oriented test and the characteristic of orthogonal arrays,and gives an example to show how to apply Orthogonal Orrays technology to Object-Oriented test efficiently.
     根据面向对象测试要求的特点及正交数组技术的特点,提出将正交数组技术应用于面向对象测试中的方法和步骤,并提供一个应用实例来说明如何将正交数组技术有效地应用到面向对象测试中。
短句来源
更多       
  “正交数组”译为未确定词的双语例句
     Described in this paper is a simple and effective method for constructing orthogonal arrays-the quasi physical and quasi sociological algorithms.
     提出了一个构造正交数组简单而有效的方法——拟物拟人算法 .
短句来源
查询“正交数组”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  orthogonal array
The Taguchi method was used for the study, and a standard L16 orthogonal array with 5 parameters and 4 levels was chosen.
      
An orthogonal array is used for the experimental design.
      
An orthogonal array testing strategy was employed for obtaining the optimum treatment condition.
      
Firstly, orthogonal array L18(21×37) is used to deal with the processing parameters that may exert influence over the manufacturing of needle punching nonwoven fabrics.
      
Optimization by orthogonal array design of solid phase extraction of organochlorine pesticides from water
      
更多          
  orthogonal arrays
A replacement scheme on the construction of orthogonal arrays
      
A method of constructing orthogonal arrays is presented by Zhang, Lu and Pang in 1999.
      
In this paper, the method is developed by introducing a replacement scheme on the construction of orthogonal arrays, and some new mixed-level orthogonal arrays of run size 36 are constructed.
      
The purpose of this paper is to survey the construction of orthogonal arrays of strength two by using difference sets.
      
This enables us to construct orthogonal arrays [2pn+1, 1+2(p+p2+...+pn,p),2], [4pn+2, 1+2p+4(p2+p3+...+pn+1),p,2], and [8pn+3, 1+2p+4p2+8(p3+p4+...+pn+2),p,2] wherep is a prime or a prime power.
      
更多          


This paper is the continuous work of Kai Tai Fang. Orthogonal arrays are widely used in manufacturing and high tech industries for quality and productivity improvement experiments. The construction of orthogonal arrays is an active research topic at present. Most existing methods are complex and produce only limited types of arrays. Described in this paper is a simple and effective method for constructing orthogonal arrays-the quasi physical and quasi sociological algorithms. Some orthogonal arrays L ...

This paper is the continuous work of Kai Tai Fang. Orthogonal arrays are widely used in manufacturing and high tech industries for quality and productivity improvement experiments. The construction of orthogonal arrays is an active research topic at present. Most existing methods are complex and produce only limited types of arrays. Described in this paper is a simple and effective method for constructing orthogonal arrays-the quasi physical and quasi sociological algorithms. Some orthogonal arrays L 27 (3 13 ) are obtained independently, which are not isomorphic to historical existing array. It is hoped that this method can produce many new orthogonal arrays after further development.

此工作是方开泰工作的继续 .正交数组在制造业和高技术产业的试验中有着广泛的应用 .目前正交数组构造的研究相当活跃 .现有的许多构造方法很复杂且所能构造的类型有限 .提出了一个构造正交数组简单而有效的方法——拟物拟人算法 .应用该算法已经独立地得到了一些历史上尚未发现的 L2 7(31 3)的不同构数组 .希望该算法经过进一步发展后将能设计出许多新的正交数组

Orthogonal arrays technology has been using widely in trial design,but not in the test case design of software development.In order to make orthogonal arrays to be used more easily in software test case design,a new orthogonal array-TC orthogonal arrays has been put forward,and has good effect on the test case design of bank rechargeable system.

正交数组技术在试验设计中起着重要的作用,但在软件测试用例设计过程中,却未得到广泛应用,为了将正交数组技术应用于软件测试用例的设计,论文提出了适用于软件测试用例设计的正交数组——TC正交数组,并将其应用于银行充值系统测试用例的设计,取得了较理想的效果。

A multi-objective evolutionary algorithm (MOEA), called orthogonal multi-objective evolutionary algorithm (OMOEA), is proposed in this paper. The idea of OMOEA is that an original niche (decision space) evolves first, and splits into a group of subniches according to the output niche-population of the evolution; then every subniche iterates the above operations so as to enhance the precision of the solutions. The main component of the new technique is the niche evolution procedure which uses a generalized design...

A multi-objective evolutionary algorithm (MOEA), called orthogonal multi-objective evolutionary algorithm (OMOEA), is proposed in this paper. The idea of OMOEA is that an original niche (decision space) evolves first, and splits into a group of subniches according to the output niche-population of the evolution; then every subniche iterates the above operations so as to enhance the precision of the solutions. The main component of the new technique is the niche evolution procedure which uses a generalized design method for MOPs to locate a non-dominated set like the orthogonal design and uses the statistical optimal method for SOPs to locate optimal solution. Employed orthogonal design method and statistical method, the OMOEA can converge fast and yield evenly distributed solutions with high precision. The numerical results show that above algorithm performs better than SPEA and other MOEAs for MOPs with two objectives. For an engineering MOP with five objectives and seven constraints, the new technique finds the precise Pareto-optimal solutions which is unknown before.

提出一种基于正交设计的多目标演化算法以求解多目标优化问题(MOPs).它的特点在于:(1)用基于正交数组的均匀搜索代替经典EA的随机性搜索,既保证了解分布的均匀性,又保证了收敛的快速性;(2)用统计优化方法繁殖后代,不仅提高了解的精度,而且加快了收敛速度;(3)实验结果表明,对于双目标的MOPs,新算法在解集分布的均匀性、多样性与解精确性及算法收敛速度等方面均优于SPEA;(4)用于求解一个带约束多目标优化工程设计问题,它得到了最好的结果———Pareto最优解,在此之前,此问题的Pareto最优解是未知的.

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关正交数组的内容
在知识搜索中查有关正交数组的内容
在数字搜索中查有关正交数组的内容
在概念知识元中查有关正交数组的内容
在学术趋势中查有关正交数组的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社