助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   最优误差估计 的翻译结果: 查询用时:0.875秒
图标索引 在分类学科中查询
所有学科
数学
力学
物理学
更多类别查询

图标索引 历史查询
 

最优误差估计     
相关语句
  optimal error estimate
     For the incompressible Stokes problem, we firstly propose mortar element method for Q_1~(rot)/Q_0 element for it, and get the optimal error estimate by proving the inf-sup condition of the discrete saddle point problem.
     对不可压缩的Stokes问题,我们首先对它提出Mortar型的Q_1~(rot)/Q_0元方法,通过证明离散鞍点问题的inf-sup条件得到最优误差估计
短句来源
     Sun and Wheeler[35] also analysed the concentration equation by using the NIPG and SIPG method ,and both methods obtain the optimal error estimate .
     在文[35]中,Sun和Wheeler针对渗流问题中的浓度方程给出了NIPG和SIPG方法,两种方法都获得了浓度的最优误差估计
短句来源
     Optimal Error Estimate of Finite Difference-Streamline Diffusion Methods with Linear Triangular Element for Time-dependent Convection-diffusion Problems
     非定常对流扩散问题差分-流线扩散法的线性三角元解的最优误差估计
短句来源
     Secondly,by means of Riesz projection operator and some new approaches,the same optimal error estimate as that for the traditional finite element method can be obtained.
     其次,利用Riesz投影算子,通过一些新的技巧和方法,得到与传统有限元相同的最优误差估计.
短句来源
     For Morley's triangular anisotropic nonconforming element we obtains the optimal error estimate of O(h) to variational inequality with curvature obstacle.
     对于曲率障碍变分不等式问题的Morley元逼近本文得到了能量模的最优误差估计
短句来源
更多       
  optimal error estimates
     Under the Ostrowski-Kantorovich condi- tions a successful existence-convergence theorem of iteration procedures for 0≤μ≤2 is estab- lished. Meanwhile,the optimal error estimates for 0≤μ≤2 are obtained.
     在 Ostrowski-Kantorovich 条件下建立对0≤μ≤2的收敛性定理,且得到对0≤μ≤2的最优误差估计.
短句来源
     HFEM (Homotopy Finite Element Method) is used to investigate a class of arch beam models. Optimal error estimates are obtained and some superconvergence results are established.
     用同伦有限元法研究了一类拱梁问题,并得到了最优误差估计和超收敛结果.与古典位移变分方法相比,此结果对位移的误差估计是最优的;
短句来源
     Stability and convergence of the totally discrete finite element method for a class of second order nonlinear coupled equations arising in the thermoelastic theory are discussed, and the optimal error estimates between the exact solution and the FEM solutions in H~1, L~2, L~∞ norm are obtained.
     本文讨论出现在热弹性理论中一类非线性双曲—抛物耦合方程全离散有限元方法的收敛性和稳定性,并给出了真解和有限元解在L~2,H~1,L~∞意义下的最优误差估计。 该类问题的半离散方法见[1],[2]。
短句来源
     In this paper we give the optimal error estimates of Petrov-Galerkin finite element (PGFE) methods for the initial-value problem of nonlinear Volterra integro-differential equations.
     在本文中 ,对于非线性维他里积分微分方程的初值问题 ,我们给出了PGFE方法的最优误差估计 .
短句来源
     Moreover, we apply the CNR element to the nearly incompressible planar elasticity problem, and obtain uniformly optimal error estimates in both energy and L2 norm, which is independent of the Lame constant λ.
     同时应用CNR元求解几乎不可压平面弹性问题,在能量范数与L~2范数意义下得到了与Lame数λ无关的最优误差估计
短句来源
更多       
  optimal error estimation
     Optimal Error Estimation on Semi-discrete Solution of Parabolic Equation
     抛物型方程半离散解的最优误差估计
短句来源
     In this paper, by use of integration of boundary as degrees of freedom, a class of product type nonconforming arbitrarily quadrilateral elements are constructed. The optimal error estimation for solving Stokes equations is obtained, and some known elements are our special cases.
     本文以边界积分值为自由度构造了一类乘积型非协调任意凸四边形单元,用它求解Stokes问题,得到了最优误差估计,某些已有的单元是其中的特例
短句来源
  optional error estimation
     In this paper,Galerkin approximations of Second order hyperbolic equation is studied with the anisotropic modified rotated Q1-element. By means of integral identities and boundary estimates techniques,the optional error estimation is presented for hyperbolic equation.
     运用具有各向异性特征的非协调元(修正的旋转Q1元)对二阶双曲方程进行了Galerkin逼近,通过采用积分恒等式和边界估计技巧,得到了相应的最优误差估计.
短句来源

 

查询“最优误差估计”译词为其他词的双语例句

 

查询“最优误差估计”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  optimal error estimate
This allows to obtain an optimal error estimate, also verified by numerical experiments.
      
We prove an optimal error estimate and give illustrative numerical example.
      
The convergence and optimal error estimate for the approximate solution and numerical experiment are provided.
      
Finally, the optimal error estimate in the energy norm is derived for the method.
      
In this paper, a Signorini problem in three dimensions is reduced to a variational inequality on the boundary, and a boundary element method is described for the numerical approximation of its solution; an optimal error estimate is also given.
      
更多          
  optimal error estimates
Optimal error estimates in L∞(J;H1(ω)) are proved, which implies an essential improvement to existed results.
      
Optimal error estimates in L2 and H1 norm are obtained for the approximation solution.
      
By use of the special properties of this element, and by introducing the complementary space and a series of novel techniques, the optimal error estimates of the energy norm and the L2-norm are obtained.
      
Optimal error estimates of a locally one-dimensional method for the multidimensional heat equation
      
For the multidimensional heat equation in a parallelepiped, optimal error estimates inL2(Q) are derived.
      
更多          
  optimal error estimation
Optimal error estimation for Petrov-Galerkin methods in two dimensions
      
Moreover, a practical way for realization of the optimal error estimation is suggested.
      
  其他


点击这里查询相关文摘
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关最优误差估计的内容
在知识搜索中查有关最优误差估计的内容
在数字搜索中查有关最优误差估计的内容
在概念知识元中查有关最优误差估计的内容
在学术趋势中查有关最优误差估计的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社