助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   透射中心 的翻译结果: 查询用时:0.009秒
图标索引 在分类学科中查询
所有学科
更多类别查询

图标索引 历史查询
 

透射中心
相关语句
  center of homology
     If two ordinary conic sections take the position of one conic section inside another or one across another, the problem of the determination of the center of homology and the parameter of homology needs further study.
     两一般二次曲线成内离和相交情况下,透射中心及透射参数如何确定的问题尚待研究。
短句来源
  相似匹配句对
     Where T(R) is the hypercenter of R; Z(R) is the center of R.
     Z(R)是R的中心
短句来源
     Mincom Central
     明科中心
短句来源
     A NOVEL TRANSMISSION IONIZATION CHAMBER WITH CARBON FIBRE ELECTRODES
     新型碳纤维透射电离室
短句来源
     A Transmission Timing Detector
     透射型定时探测器
短句来源
     Further Study of Homology of Sphere
     球面透射的进一步研究
短句来源
查询“透射中心”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


Based on the study of changing the circle into the parabola in which thecenter of circle is the perspective center,and according to the correspondingrelationship of a circle with a parabola,this paper presents such characteristics ofparabola,as focal point,apex and the tangent place:thus the convenient conditionis created for changing a parabola into a circle.According to these characteristicsan easy method has been suggested for geometry drawing of parabola and thismethod has found application to engineering...

Based on the study of changing the circle into the parabola in which thecenter of circle is the perspective center,and according to the correspondingrelationship of a circle with a parabola,this paper presents such characteristics ofparabola,as focal point,apex and the tangent place:thus the convenient conditionis created for changing a parabola into a circle.According to these characteristicsan easy method has been suggested for geometry drawing of parabola and thismethod has found application to engineering graphic.

本文是在研究以圆心为透射中心,把圆变换为抛物线的基础上,根据圆与抛物线的对应关系,提出有关抛物线焦点、顶点、切线位置的特性,从而为把抛物线变换为圆创造了方便条件。根据这些特性,提出了有关抛物线几何作图的简便方法及在工程图学上得到了应用。

This paper briefly introduces the theory and drawing method of circle formation by conic perspective transformation. Then it presents a simplest method—the focal point of conic section is used as the perspective centre, and so the conic section is transformed into a circle with an arbitrary radius.

简述二次曲线透射变换为圆的原理和作图方法,在此基础上进一步论述了以二次曲线焦点为透射中心,把二次曲线变换为予想的任意半径圆的最简单作图方法。这就为解决有关二次曲线及二次回转面的画法几何作图问题提供了方便条件。

In the problem of homology, the condition of the homology of two quadric(one quadric is inside another) is not investigated so far. In general, the condition is difficult to determine. This paper further studies the problem of homology of sphere. Four kinds of homology structures of sphere(one sphere is inside another) and their quantitative relation between one sphere and the other sphere are obtained. The results lay a theoretical foundation for solving the problem of homology of two usual quadric.The conclusion...

In the problem of homology, the condition of the homology of two quadric(one quadric is inside another) is not investigated so far. In general, the condition is difficult to determine. This paper further studies the problem of homology of sphere. Four kinds of homology structures of sphere(one sphere is inside another) and their quantitative relation between one sphere and the other sphere are obtained. The results lay a theoretical foundation for solving the problem of homology of two usual quadric.The conclusion of the study of homology of sphere can be applied to solve the problem of relevant homology of plane. If two ordinary conic sections take the position of one conic section inside another or one across another, the problem of the determination of the center of homology and the parameter of homology needs further study.

在透射问题中,两内离二次曲面成透射的条件至今尚未研究,通常,该条件很难确定。笔者进一步研究了球面透射问题,得到了两内离球面的4种透射结构及其定量关系,从而为研究更一般的二次曲面内离情况下成透射的问题奠定了一定的理论基础。球面透射的研究结论,可用到相关的平面上的透射问题中。两一般二次曲线成内离和相交情况下,透射中心及透射参数如何确定的问题尚待研究。

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关透射中心的内容
在知识搜索中查有关透射中心的内容
在数字搜索中查有关透射中心的内容
在概念知识元中查有关透射中心的内容
在学术趋势中查有关透射中心的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社