助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   流量异常 在 计算机软件及计算机应用 分类中 的翻译结果: 查询用时:0.069秒
图标索引 在分类学科中查询
所有学科
计算机软件及计算机应用
互联网技术
电信技术
更多类别查询

图标索引 历史查询
 

流量异常
相关语句
  “流量异常”译为未确定词的双语例句
    Analysis of Abnormality of Worm Traffic
    蠕虫流量异常特性分析
查询“流量异常”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  traffic anomaly
From the IT technical support staff, we learned that this traffic anomaly resulted from misconfiguration of a campus-level mail server.
      
If this number exceeds the threshold value for any destination port, it reports a traffic anomaly.
      
Scene change analysis could reveal sudden changes in traffic patterns leading to traffic anomaly detection.
      
Second, the monitoring with respect to time of the estimated parameters of this model may constitute a central piece in traffic anomaly detection.
      
Traffic anomaly detection--Attackers often conduct a port or network scan as a precursor to an attack.
      
更多          


Defining appropriate membership functions is a difficult task in fuzzy data mining to detect intrusions.To solve the problem,an approach that applies genetic algorithm to optimize parameters of membership functions in anomaly detection was presented.Parameters of membership functions were arranged into a sequential parameter-set coded to an individual.An optimal parameter-set could be derived by embedding fuzzy data mining in the process of evolution of individual.With the parameter-set in anomaly detection,normal...

Defining appropriate membership functions is a difficult task in fuzzy data mining to detect intrusions.To solve the problem,an approach that applies genetic algorithm to optimize parameters of membership functions in anomaly detection was presented.Parameters of membership functions were arranged into a sequential parameter-set coded to an individual.An optimal parameter-set could be derived by embedding fuzzy data mining in the process of evolution of individual.With the parameter-set in anomaly detection,normal state of protected system could be differentiated from anomalous state in the most extent,and the veracity of anomaly detection was improved greatly.Experiments on anomaly detection to network traffic prove the feasibility of the approach.

建立合适的隶属度函数是入侵检测中应用模糊数据挖掘所面临的一个难点。针对这一问题,提出了在异常检测中运用遗传算法对隶属度函数的参数进行优化的方法。将隶属度函数的参数组合成有序的参数集并编码为遗传个体,在个体的遗传进化中嵌入模糊数据挖掘,可以搜索到最佳的参数集。采用这一参数集,能够在实时检测中最大限度地将系统正常状态与异常状态区分开来,提高异常检测的准确性。最后,对网络流量的异常检测实验验证了这一方法的可行性。

>=Scanning traffic is the majority of worm traffic. Gaining deep insight into worm scanning traffic can do much help in simulating worm traffic and detecting worm hosts. By regarding first contact connections as investigated objects, the distributions of related indices for normal hosts, "latency-limited" and "bandwidth-limited" worm hosts were analyzed. The indices were connection arrival interval, request size, response size, duration and RTT. After comparing the distributions of these indices, the conclusions...

>=Scanning traffic is the majority of worm traffic. Gaining deep insight into worm scanning traffic can do much help in simulating worm traffic and detecting worm hosts. By regarding first contact connections as investigated objects, the distributions of related indices for normal hosts, "latency-limited" and "bandwidth-limited" worm hosts were analyzed. The indices were connection arrival interval, request size, response size, duration and RTT. After comparing the distributions of these indices, the conclusions are obtained that worm traffic does not possess heavy-tailed character, unlike normal traffic does. The changeability of abnormality of worm traffic was also discussed.

蠕虫扫描流量是蠕虫流量的主要表现,深入研究扫描流量对蠕虫流量模拟和蠕虫检测具有重要意义。以第一次连接为分析对象,研究正常主机、“延迟限制型”和“带宽限制型”蠕虫流量的连接到达间隔、连接请求大小、连接响应大小、连接持续时间和RTT等分布。通过对比上述指标的统计分布,说明蠕虫流量的异常特性在于上述指标分布不具备正常主机流量重尾特性,并分析了上述异常特性的可改变性。

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关流量异常的内容
在知识搜索中查有关流量异常的内容
在数字搜索中查有关流量异常的内容
在概念知识元中查有关流量异常的内容
在学术趋势中查有关流量异常的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社