助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   离散误差 在 力学 分类中 的翻译结果: 查询用时:0.478秒
图标索引 在分类学科中查询
所有学科
力学
动力工程
水利水电工程
物理学
无线电电子学
数学
工业通用技术及设备
计算机软件及计算机应用
更多类别查询

图标索引 历史查询
 

离散误差
相关语句
  “离散误差”译为未确定词的双语例句
    In this paper provided is an error estimation for fully-discrete method, which has not been studied yet.
    对剪切板形变问题的全离散误差估计进行了研究 .
短句来源
    Numerical scattering is one of the most common discretization errors in the numerical method for radiative transfer equation.
    数值散射是辐射传递方程近似算法中最常见的离散误差
短句来源
查询“离散误差”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  discretization error
Sharp estimates (in the power scale) are obtained for the discretization error in the solutions to Poisson's equation whose right-hand side belongs to a Korobov class.
      
Improved discretization error estimates for first-order system least squares
      
We then use these results together with an Aubin-Nitsche bound to develop improved discretization error estimates.
      
For the 2D eddy currents equations, we design an adaptive edge finite element method (AEFEM) that guarantees an error reduction of the global discretization error in the H (curl)-norm and thus establishes convergence of the adaptive scheme.
      
This property leads to the derivation of analytical expressions for the discretization error and the condition number, and also to an asymptotic estimate for the latter, revealing an exponential growth with the scatterer size.
      
更多          


The mode of a wave equathn(WE)for calculating the circulation in shallow water is studied.It is shown that the WE mode satisfies the conservation of mass only under certain conditions,which can be easily met by an appropriate choice of a coefficient in the equation provided an improved WE mode is adopted.The WE mode is compared with the primitive shallow water equation(PE)rnode by making a Fourier analysis. It has been found that the PE mode may lose its ability to damp the non-physical spatial oscillation...

The mode of a wave equathn(WE)for calculating the circulation in shallow water is studied.It is shown that the WE mode satisfies the conservation of mass only under certain conditions,which can be easily met by an appropriate choice of a coefficient in the equation provided an improved WE mode is adopted.The WE mode is compared with the primitive shallow water equation(PE)rnode by making a Fourier analysis. It has been found that the PE mode may lose its ability to damp the non-physical spatial oscillation because of the dis- cretization error. However,the WE mode is capable of maintaining its damping ability. therefore,the WE mode is better than the PE one in suppressing the spatial oscillation of the short wave.

对计算浅水环流的波方程模式进行了研究,指出了波方程模式的解在什么条件下满足质量守恒;并证明了空间离散误差不会影响该模式对非物理短波干扰的衰减,所以波方程模式具有较好的抑制短波振荡的特性。

Two problems in laminar flow and heat transfer are evaluated by using the SIMPLEC algorithm. Fourth precision solution can be derived from two grid sets solution with a second precision central difference scheme by Richardson extrapolation. It reduces the amount of calculation. Uncertainty is determined from the discretization error analysis. A finer grid calculation is made to validate the extrapolation scheme.

用SIMPLEC算法计算了流动传热问题中2个有基准解的层流问题.对于2阶精度中心差分格式的2套网格数值解,用Richardson外推法可以得到4阶精度的解,其工作量比直接求解4阶离散方程的工作量减少许多;对于计算中的数值不确定度,用该方法分析了离散误差,并用逐次加密网格的方法探讨了外推法的合理性

In this paper provided is an error estimation for fully-discrete method, which has not been studied yet.Firstly we discretize Ω into finite element,use the Galerkin,and thus obtain two finite dimensional spaces Q h and V h,and a system of ordinary differntial equations,and assume that the function in υ and θ satisfying the Dirichlet bundary conditions.Secondly,we use Green theorem to obtain an expression of finite element approximation of an evolution. Then by adopting Crank-Nicolson format, we use a derivative...

In this paper provided is an error estimation for fully-discrete method, which has not been studied yet.Firstly we discretize Ω into finite element,use the Galerkin,and thus obtain two finite dimensional spaces Q h and V h,and a system of ordinary differntial equations,and assume that the function in υ and θ satisfying the Dirichlet bundary conditions.Secondly,we use Green theorem to obtain an expression of finite element approximation of an evolution. Then by adopting Crank-Nicolson format, we use a derivative format to discretize time.According to the alternation method,after transforming change these coupling nonlinear equations into two separate noncoupling equations. Finally,we use initial value to obtain that result is the optimal error estimates in the L 2-norm.

对剪切板形变问题的全离散误差估计进行了研究 .首先利用Galerkin方法 ,对Ω进行有限元剖分 ,获得两个有限维空间Qh 和Vh 并假设满足Dirichlet边界条件 ,再利用Green定理获得有限元逼近形式 ,并采用Crank -Nicolson格式的一种变形形式对时间进行离散 .根据交替法的思想 ,将这一耦合非线性方程组变成两个独立的非耦合的方程 ,最后利用初值得出在L2 范数下的最优误差估计式 .

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关离散误差的内容
在知识搜索中查有关离散误差的内容
在数字搜索中查有关离散误差的内容
在概念知识元中查有关离散误差的内容
在学术趋势中查有关离散误差的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社