助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   误差估计式 的翻译结果: 查询用时:0.265秒
图标索引 在分类学科中查询
所有学科
数学
更多类别查询

图标索引 历史查询
 

误差估计式
相关语句
  error estimate formula
     In this paper, we prove the hγ,ω (0≤γ≤ω0) minimum is the h1,1, here, hγ,ω is an error estimate constant of the AOR method's error estimate formula in strictly diagonally dominant matrix.
     本文论证了严格对角占优矩阵之AOR法的误差估计式中的误差估计常数hγ,ω(0≤γ≤ω0)的最小值是h1,1.
短句来源
     A New Error Estimate Formula with an Application
     新的误差估计式及应用
短句来源
     In this paper, the error estimate formula is given for a double set parameters plate element (VZ1 element) and the perturbation of node parameters is analyzed.
     本文针对具体双参数板元给出它的误差估计式,并分析了节点参数的扰动量。
短句来源
     A simple and direct method of proof for Banach's deflation mapping principle are given, and a new error estimate formula is obtained. As application, the solution of the integral equation is estimated.
     给出了Banach压缩映照原理的简捷证明,由此得到了一个新的误差估计式,并将它应用于积分方程解的估计.
短句来源
     The convergence of the iterative method is proved under some conditions, and an error estimate formula is presented.
     在给定条件下,证明了该迭代法的收敛性,并给出了误差估计式.
短句来源
更多       
  “误差估计式”译为未确定词的双语例句
     The remainder erron R_n~(k)(x) of numcrical differentiation formulas f~(k)(x)=L_n~(k)+R_n~(k)(x)(K=0, 1,…, n) have been rcprcsented in lcmma 2 by dividcd diffcrcnccs or derivativcs of ordcrs n+1, n+2, …, n+m+1 of f(x) and gave a cqtimation of erron.
     数值微分公式f~(k)(x)=L_n~(k)(x)+R_n~(k)(x)的截断误差R_n(k)(x)在引理2中用f(x)的n+l,n+2,…,n+m+1阶差商或导数表示出来,并且给出误差估计式:
短句来源
     New sufficient conditions for convergence of the SOR iteration are given and errors are estimated. we can extent partly the limitation of convergence of the SOR iteration from‖B‖<1 to‖B‖m≥1.
     在简述内容的基础上,给出了当Jacobi迭代阵时SOR迭代法收敛的充分条件及误差估计式.将收敛的限制由‖B‖<1部分地扩充到‖B‖_m≥1上。
短句来源
     SOR-method Convergence and Error Estimate Formulain Strictly Diagonally Dominant Matrix
     严格对角占优矩阵的SOR法收敛性和误差估计式
短句来源
     Chapter 4 is about the Monte Carlo integration. We get a theoretical error of the fine antithetic variables Monte Carlo(FAMC) method for multidimensional integration.
     第4章是关于蒙特卡罗积分的,得出了用于多重积分的精细对偶变数蒙特卡罗(fine antithetic variables Monte Carlo,简称FAMC)方法的误差估计式
短句来源
     Especially, when σ = ω = 1, a simple estimate for error of Gauss-Seidel iterative method is obtained.
     作为特殊情形,当σ = ω = 1时,得到了Gauss-Seidel迭代法的更简捷形式的误差估计式.
短句来源
更多       
  相似匹配句对
     A New Error Estimate Formula with an Application
     新的误差估计及应用
短句来源
     Estimation of the INS's Errors
     惯性导航系统的误差估计
短句来源
     This paper presents an abstract error estimate for σh.
     本文导出了σh的抽象误差估计.
短句来源
     THE BEST FORM OF ERROR ESTIMATION IN MEASURING UNDERGROUND MINE SIDE LENGTH
     矿井边长丈量误差估计的最佳形
短句来源
     Then we get the error estimate in the L2- norm. Keywords:Liquid crystal; Grank-Nicoson;
     最后得出在L~2范数下的误差估计
短句来源
查询“误差估计式”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


The special perturoatlons of 12 minor planets of Flora groupe have been Computed. The numerical integration was carried out by Cowell's method at 20 days interval. The perturbations due to Jupiter and Saturn only were considered. We have investigated the extreme case of errors that may be introduced by neglecting perturbations due to four inner planets, by the omission of high order terms in the numerical integration and by the inaccurate positions of Jupiter and Saturn. We also have calculated the mean values...

The special perturoatlons of 12 minor planets of Flora groupe have been Computed. The numerical integration was carried out by Cowell's method at 20 days interval. The perturbations due to Jupiter and Saturn only were considered. We have investigated the extreme case of errors that may be introduced by neglecting perturbations due to four inner planets, by the omission of high order terms in the numerical integration and by the inaccurate positions of Jupiter and Saturn. We also have calculated the mean values of these errors.

本文叙述了关于12颗伏洛拉群小行星的特别摄动计算,计算方法采取数值积分的考埃尔(Cowell)方法,积分步长采取20天,只考虑了木星和土星的摄动。研究了忽略四个内行星的摄动、忽略数值积分中的高次差项以及由于木星和土星的坐标的不准确,这三方面因素所产生的误差的最大值,并计算了这些误差的平均值。求得每一步的加速度的最大误差为ε(f)=2×10-6,置n=155,利用布劳威尔(D.Brouwer)的关于积分n步后,坐标的或然误差的估计式,求得小行星的地心角位置可达到ε″ρ=89″=0.m1。为检验在理论上所估计的误差的正确性,通过[9],求得谷神星(Cercs)的一组瞬时轨道要素,按此要素进行摄动计算,求得四次冲日附近的地心位置,并和[9]中表上的精确位置比较,从所得到的差值,可知所求得误差值与由公式(26)所求得的累积误差相符合。得出结论:当离开历元正负8年的冲日附近,摄动计算的误差对于小行星的地心角位置的影响的最大可能值约等于0.m1。

This paper is a continuation, complement, and improvement of [ 1 ]. In [ 1 ] we have discussed those cases that the interpolated function f (x) was continuous in 1st, 2nd, and 3rd order. Here we'll discuss the case that f (x) is a continuous function of 4th order, and improve the error estimates of the cases that f (x) is a continuous function of 1st and 3rd order. Simultaneusly, we derive the error estimates expressed by ths modulus of continuity of the appropriate derivative in each case. These estimates increase...

This paper is a continuation, complement, and improvement of [ 1 ]. In [ 1 ] we have discussed those cases that the interpolated function f (x) was continuous in 1st, 2nd, and 3rd order. Here we'll discuss the case that f (x) is a continuous function of 4th order, and improve the error estimates of the cases that f (x) is a continuous function of 1st and 3rd order. Simultaneusly, we derive the error estimates expressed by ths modulus of continuity of the appropriate derivative in each case. These estimates increase the speed of convergence of the interpolating splines.

本文是“插值样条的误差估计”一文[1]的继续、补充和改进。在该文中讨论了被插值函数f(x)为一、二、三阶连续的情形。这里继而讨论了f(x)为四阶连续的情形,且对一阶及三阶连续的情形的误差估计作了改进,同时对各种情况推导了用相应导数的连续模表示的误差估计式,这种估计式对插值样条的收敛速度有所提高。

Using the comparison method, an approximate approach to the delay-differential equations is proposed in this paper. The proof of its convergence and calculation stability is also given.

本文应用比较方法,提出滞后型泛函微分方程初始问题的近似解法,给出了解的近似迭代序列及其误差估计式,并证明迭代序列的收敛性和计算稳定性。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关误差估计式的内容
在知识搜索中查有关误差估计式的内容
在数字搜索中查有关误差估计式的内容
在概念知识元中查有关误差估计式的内容
在学术趋势中查有关误差估计式的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社