助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   重构基准 的翻译结果: 查询用时:0.197秒
图标索引 在分类学科中查询
所有学科
金属学及金属工艺
机械工业
更多类别查询

图标索引 历史查询
 

重构基准
相关语句
  reconstruction datum
     Considering that the error motion of the least square centers is related to one order harmonic component of rotative error motion, the least square center purifying method was proposed so as to obtain the reconstruction datum of cylindrical form error by using the omitted one order harmonic component of rotative error motion.
     考虑到截面最小二乘圆心的误差运动仅和回转误差运动中的一阶谐波分量有关 ,提出了一种新的“二乘心提纯法”以获得重构基准 ,即利用回转误差运动中通常被忽略的一阶谐波分量进行零件圆柱度形状误差的重构 .
短句来源
     The reconstruction datum in the cylindricity measurement can be easily determined by means of this method.
     结果表明:该方法提取的最小二乘圆心在绝对坐标系内具有良好的复现性,从而有效地解决了圆柱度测量中重构基准难以确定的问题。
短句来源
  相似匹配句对
     subpart reconstruction;
     子体重构 ;
短句来源
     Restructuring Loyalty and Filial Piety
     重构“忠孝”
短句来源
     length standard;
     长度基准
短句来源
     The Discussion of Voltage Reference and it's Application
     电压基准
短句来源
查询“重构基准”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


The mutual positions among different cross sections, as well as the dimension variety and roundness form error of the cross sections of the measured cylindrical workpiece are important to the cylindrical form error. So the least square centers of sections can be regarded as the reconstruction datum of cylindrical form error. Because of the disturbance of random error, the rotative error motion will not have strict periodicity, which will lead to the least square centers not appearing repeatedly in the same position....

The mutual positions among different cross sections, as well as the dimension variety and roundness form error of the cross sections of the measured cylindrical workpiece are important to the cylindrical form error. So the least square centers of sections can be regarded as the reconstruction datum of cylindrical form error. Because of the disturbance of random error, the rotative error motion will not have strict periodicity, which will lead to the least square centers not appearing repeatedly in the same position. Considering that the error motion of the least square centers is related to one order harmonic component of rotative error motion, the least square center purifying method was proposed so as to obtain the reconstruction datum of cylindrical form error by using the omitted one order harmonic component of rotative error motion. The effectiveness of the proposed method was proved by some experiments.

除零件截面的尺寸变化及截面的圆度形状误差外 ,截面间的相互位置同样是影响零件圆柱度形状误差大小的重要因素 ,因此可以把截面最小二乘圆心的位置作为圆柱度形状误差重构的基准点 .由于随机误差的干扰以及截面最小二乘圆心的回转误差运动不具严格的周期性 ,导致了截面最小二乘圆心并不在某一确定位置上周期性复现 .考虑到截面最小二乘圆心的误差运动仅和回转误差运动中的一阶谐波分量有关 ,提出了一种新的“二乘心提纯法”以获得重构基准 ,即利用回转误差运动中通常被忽略的一阶谐波分量进行零件圆柱度形状误差的重构 .通过实测验证了该方法的有效性

The location of the section least square circle centre was the basis of cylindrical form error reconstruction. At present there is no suitable method to pick up the eccentric error motion of the center from the separated revolved error motion effectually. The separated rotation error motion was made up of the eccentric error motion of the least square circle center and a pure rotation error motion with a complex harmonic. According to the above reason a new purifying method of reconstruction datum the curve...

The location of the section least square circle centre was the basis of cylindrical form error reconstruction. At present there is no suitable method to pick up the eccentric error motion of the center from the separated revolved error motion effectually. The separated rotation error motion was made up of the eccentric error motion of the least square circle center and a pure rotation error motion with a complex harmonic. According to the above reason a new purifying method of reconstruction datum the curve fitting method was carried out in this paper. The new method was that the eccentric error motion was replaced by the first harmonic portion which had been separated from the rotation motion. The test result indicates that the method is feasible and can solve the problem how to define the reconstruction datum in the cylindricality measure.

提出了一种新的重构基准提取方法—曲线拟合法,即采用分离出的回转误差运动中一阶谐波分量代替偏心误差运动。试验表明,该方法是可行的,有效地解决了圆柱度测量中重构基准难以确定的问题。

The position of the least square center for a cross section in the absolute coordinate system is an important factor that affects cylindrical form errors.To determine this position is the basis on which cylindrical form errors can be retraced.At present,there is no efficient way to retrace the eccentric error motion of the center from the separated revolved error motion.Since one-order harmonic component of pure rotation error motion only affects the position of reconstructed cylinder in the absolute coordinate...

The position of the least square center for a cross section in the absolute coordinate system is an important factor that affects cylindrical form errors.To determine this position is the basis on which cylindrical form errors can be retraced.At present,there is no efficient way to retrace the eccentric error motion of the center from the separated revolved error motion.Since one-order harmonic component of pure rotation error motion only affects the position of reconstructed cylinder in the absolute coordinate systems and does not affect the value of cylindricity,a new method,named cosine regression purifying,to take the least square centers motion(i.e.cylindricity reconstruction datum) out of rotary error motion is presented.That is,the eccentric error motion is replaced by the one-order harmonic component of the rotation error motion.The test result indicates that the position of the least square centers purified by this method has good repeatability in the absolute coordinate systems.The reconstruction datum in the cylindricity measurement can be easily determined by means of this method.

截面最小二乘圆心在绝对坐标系内的位置是影响圆柱度形状误差大小的重要因素。合理确定其位置,是圆柱度形状误差重构的基础。从分离出的回转误差运动中有效地提取截面最小二乘圆心的偏心误差运动,目前还没有合适的方法。基于纯回转误差运动中一阶谐波分量仅影响重构出的圆柱体在绝对坐标系内的位置,不影响圆柱度误差的大小。提出了一种提取截面二乘圆心运动(圆柱度重构基准)的方法———余弦回归提取法,即采用分离出的回转误差运动中的一阶谐波分量来代替偏心误差运动。结果表明:该方法提取的最小二乘圆心在绝对坐标系内具有良好的复现性,从而有效地解决了圆柱度测量中重构基准难以确定的问题。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关重构基准的内容
在知识搜索中查有关重构基准的内容
在数字搜索中查有关重构基准的内容
在概念知识元中查有关重构基准的内容
在学术趋势中查有关重构基准的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社