助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   稳态最优kalman平滑 的翻译结果: 查询用时:0.206秒
图标索引 在分类学科中查询
所有学科
航空航天科学与工程
更多类别查询

图标索引 历史查询
 

稳态最优kalman平滑
相关语句
  相似匹配句对
     Information Fusion Steady-state Optimal Kalman Smoother
     信息融合稳态最优Kalman平滑
短句来源
     Multisensor Optimal Information Fusion Steady-state Kalman Filter
     多传感器最优信息融合稳态Kalman滤波器
短句来源
     Two-Sensor Information Fusion Steady-State Optimal Kalman Filter
     两传感器信息融合稳态最优Kalman滤波器
短句来源
     Multi-sensor optimal information fusion steady-state Kalman filter weighted by scalars
     多传感器标量加权最优信息融合稳态Kalman滤波器
短句来源
     Information fusion k-step-ahead steady-state optimal Kalman predictor and Wiener predictor
     信息融合超前k步稳态最优Kalman预报器和Wiener预报器
短句来源
查询“稳态最优kalman平滑”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


In order to overcome the drawback that the optimal fixed-interval Kalman smoothing algorithms require a large computational burden for control systems with correlated noise, by using the Kalman filtering method based on the controlled au-toregressive moving average (CARMA) innovation model, the optimal fixed-interval Wiener recursive state smoother is derived from the steady-state optimal Kalman smoother. The obtained smoother contains the high-order polynomial matrix whose coefficient matrices exponentially...

In order to overcome the drawback that the optimal fixed-interval Kalman smoothing algorithms require a large computational burden for control systems with correlated noise, by using the Kalman filtering method based on the controlled au-toregressive moving average (CARMA) innovation model, the optimal fixed-interval Wiener recursive state smoother is derived from the steady-state optimal Kalman smoother. The obtained smoother contains the high-order polynomial matrix whose coefficient matrices exponentially decay to zero. A fast sub-optimal fixed-interval Wiener smoothing algorithm is proposed by means of truncating terms with coefficient matrices approximately equal to zero. Thus, the computational burden is obviously reduced and the method is suitable for real time application. Both the formula for truncation error and the formula for selecting truncation index are given. A simulation example shows the effectiveness of the proposed algorithm.

为了克服带相关噪声控制系统的最优固定区间Kalman平滑算法要求较大计算负担的缺点,应用Kalman滤波方法,基于CARMA新息模型,由稳态最优Kalman平滑器导出了带相关噪声控制系统的最优固定区间Wiener递推状态平滑器,它带有系数阵指数衰减到零的高阶多项式矩阵.用截断系数矩阵近似为零的项的方法提出了相应的快速次优固定区间Wiener平滑算法.它显著地减少了计算负担,便于实时应用,还给出了截断误差公式和选择截断指标的公式.仿真例子说明了快速平滑算法的有效性.

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关稳态最优kalman平滑的内容
在知识搜索中查有关稳态最优kalman平滑的内容
在数字搜索中查有关稳态最优kalman平滑的内容
在概念知识元中查有关稳态最优kalman平滑的内容
在学术趋势中查有关稳态最优kalman平滑的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社