助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   超启发式 的翻译结果: 查询用时:0.607秒
图标索引 在分类学科中查询
所有学科
数学
自动化技术
计算机软件及计算机应用
更多类别查询

图标索引 历史查询
 

超启发式
相关语句
  meta-heuristic
     In order to decrease operational costs and improve the performance of networks,a new and efficient modern meta-heuristic search method based on tabu search algorithm for solving the problem of link capacity and flow assignment (CFA) in computer communication networks is presented in this paper for the first time. The influence of link fixed cost,delay and variable expenditures on the total operational costs in computer communication networks are discussed.
     为了降低网络的运营费用与改进网络性能 ,首次采用近年来新出现的一种高效的现代超启发式搜索方法——禁忌搜索算法求解计算机通信网络中链路容量与流量分配 ( CFA)问题 ,讨论了计算机通信网络中链路的固定费用、时延费用与可变费用对运营总费用的影响 .
短句来源
     Memetic algorithm is a kind of meta-heuristic algorithm combined genetic algorithm with local search.
     Memetic算法是一种将遗传算法和局部搜索结合使用的超启发式算法。
短句来源
  super-heuristic
     Super-Heuristic Algorithm in Selecting Sensor Sets
     超启发式传感器选择算法
短句来源
     The algorithms of selecting sensor sets in the sensor manager are too computationally demanding to be implemented in many systems. This paper studies the use of super-heuristic algorithm in sensor selection to reduce the computational complexity.
     在传感器管理中,传感器的选择算法计算是目前需求量最大的问题,采用超启发式算法降低传感器选择算法的复杂度计算。
短句来源
     This paper according to the aims presented by covariance control,begins with the greed algorithm and studies the use of two kinds of super-heuristic algorithms,greed/uniform and greed/order,in selecting sensor sets algorithm to reduce the computational complexity.
     依据协方差控制提出的传感器选择目标,从启发式的贪婪算法入手,研究贪婪/均匀和贪婪/次序两种超启发式算法在传感器选择算法中的应用,以提高传感器管理的运算效率,降低其计算复杂度。
短句来源
  “超启发式”译为未确定词的双语例句
     Location - Routing Problem (LRP) is complex combinatorial optimization problem in designing logistic systems. The proper methods to solve LRP are heuristics or metaheuristics because of its NP -hard feature.
     定位——运输路线安排问题(Location-Routing Problem--LRP)是物流系统规划和设计中涉及到的一类复杂的组合优化问题,是NP-hard问题,只能用启发式(heuristic)或超启发式(metaheuristic)算法求解。
     Study on Route Selection Optimization in Computer Communication Networks Based on Modern Metaheuristic Search Method
     基于现代超启发式搜索方法的计算机通信网络中路由选择优化的研究
短句来源
     Uptrend on Metaheuristics in Approximate Search Algorithms for Combinatorial Optimization
     组合优化近似搜索算法中的超启发式发展趋势
短句来源
     Tabu Search(TS) is a metaheuristic viewed as an integration of management science and artificial intelligence, it is an efficient method for combinatorial optimization problem.
     禁忌搜索方法(TS)是一种将人工智能技术引入管理中的一种高于一般启发式算法的智能化“超启发式”算法,它能有效地解决大型组合优化问题。
短句来源
     We (then) (discuss) the application of Guided Local Search, a new kind of meta-heuristics, in such problems.
     本文则探讨了一种较新的超启发式搜索方法导引式局部搜索在求解这类过度约束人员调配问题中的应用。
短句来源
更多       
  相似匹配句对
     Super-Heuristic Algorithm in Selecting Sensor Sets
     启发式传感器选择算法
短句来源
     Super Acids
     强酸
短句来源
     The Super Acid
     强酸
短句来源
     Uptrend on Metaheuristics in Approximate Search Algorithms for Combinatorial Optimization
     组合优化近似搜索算法中的启发式发展趋势
短句来源
     On Heuristic Teaching
     启发式教学拾零
短句来源
查询“超启发式”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  meta-heuristic
A meta-heuristic approach-Scatter Search (SS) is developed for the PCARP and evaluated on a large variety of instances.
      
GLS is a general, penalty-based meta-heuristic, which sits on top of local search algorithms to help guide them out of local minima.
      
Meta-heuristic based decision support for portfolio optimization with a case study on tracking error minimization in passive por
      
In this paper we describe the concept and design of a meta-heuristic based decision support system generator (DSS-generator) for portfolio optimization.
      
A model-free simulation-optimization approach only requires a discrete-event simulator of the system along with a numerical optimization method such as a gradient-ascent technique or a meta-heuristic.
      
更多          
  meta heuristic
One meta heuristic technique that has not yet been applied to solve multi objective simulation optimization problems is simulated annealing.
      


Tabu Search(TS) is a metaheuristic viewed as an integration of management science and artificial intelligence, it is an efficient method for combinatorial optimization problem. In this paper, we solve parallel machine minimizing the number of tardy jobs problem using TS, and compare it to the best heuristic found so far, computational results show its efficiency.

禁忌搜索方法(TS)是一种将人工智能技术引入管理中的一种高于一般启发式算法的智能化“超启发式”算法,它能有效地解决大型组合优化问题。本文用TS方法解决最小化拖期任务数的并行多机调度问题,并同目前最好的启发式作了比较,大量实验表明了TS方法的有效性。

In order to improve performances of computer communication networks, the important route selection optimization in computer communication networks is firstly studied in detail by using the modern metaheuristic search method, i. e., Tabu search, which is of great flexibility and came into use just a few years ago. Better results are obtained and compared with the traditional Lagrangean relaxation and subgradient optimization method. Especially, the superiority of this method over other algorithms is further shown...

In order to improve performances of computer communication networks, the important route selection optimization in computer communication networks is firstly studied in detail by using the modern metaheuristic search method, i. e., Tabu search, which is of great flexibility and came into use just a few years ago. Better results are obtained and compared with the traditional Lagrangean relaxation and subgradient optimization method. Especially, the superiority of this method over other algorithms is further shown in the case of very heavily loaded network. Thus, the new thinking and method are provided for the optimization theory of computer networks. A great number of the experimental results simulated by the computer show that the given conclusions are of important theoretical value and have broad application prospects, not only for the computer communication networks, but also for the networks in telecommunication, electrical power and transportation fields, in their performance optimizations and evaluations, achieving better network properties and beneficial results, and reducing their operation costs, etc.

为了改进计算机通信网络的性能 ,首次采用近年来才开始应用、且具有很强灵活性的现代超启发式搜索方法—— Tabu搜索方法 ,对计算机通信网络中重要的路由选择优化问题进行了详细的研究 ,得到了比经典的拉格朗日松弛及子梯度优化方法更优的结果 ,尤其在网络负荷很重的情况下 ,与其它算法相比 ,更显示出该方法的优越性 ,从而为计算机网络的优化理论提供了新的思路和方法 .大量的计算机仿真实验的结果表明 ,所得结论对于计算机通信网络以及电信网、电力网、交通运输网等 ,在其性能优化与评价、提高网络性能与效益、降低运营费用等方面 ,具有重要的理论价值和广阔的应用前景

In order to decrease operational costs and improve the performance of networks,a new and efficient modern meta-heuristic search method based on tabu search algorithm for solving the problem of link capacity and flow assignment (CFA) in computer communication networks is presented in this paper for the first time.The influence of link fixed cost,delay and variable expenditures on the total operational costs in computer communication networks are discussed.The results of a great number of computer simulation experiments...

In order to decrease operational costs and improve the performance of networks,a new and efficient modern meta-heuristic search method based on tabu search algorithm for solving the problem of link capacity and flow assignment (CFA) in computer communication networks is presented in this paper for the first time.The influence of link fixed cost,delay and variable expenditures on the total operational costs in computer communication networks are discussed.The results of a great number of computer simulation experiments show that,not only the effectiveness of tabu search algorithm for solving CFA problem has been borne out,but also,compared with the traditional Lagrangean relaxation and subgradient optimization method,the obtained solution has higher accuracy; and compared with the genetic algorithm,the superiority of tabu search algorithm is further shown in large-size or heavily loaded networks.

为了降低网络的运营费用与改进网络性能 ,首次采用近年来新出现的一种高效的现代超启发式搜索方法——禁忌搜索算法求解计算机通信网络中链路容量与流量分配 ( CFA)问题 ,讨论了计算机通信网络中链路的固定费用、时延费用与可变费用对运营总费用的影响 .大量的计算机仿真实验结果不仅验证了禁忌搜索算法对求解 CFA问题的有效性 ,而且与传统的拉格朗日松弛及子梯度寻优算法相比 ,解的质量有大幅度提高 ;与遗传算法相比 ,对大规模或负荷很重的网络 ,该算法更具优越性 .

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关超启发式的内容
在知识搜索中查有关超启发式的内容
在数字搜索中查有关超启发式的内容
在概念知识元中查有关超启发式的内容
在学术趋势中查有关超启发式的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社