助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   源数估计 的翻译结果: 查询用时:0.468秒
图标索引 在分类学科中查询
所有学科
电信技术
更多类别查询

图标索引 历史查询
 

源数估计
相关语句
  source number estimation
     Source Number Estimation Using Cyclostationarity Property
     利用信号的循环平稳特性进行空间源数估计
短句来源
  signal number estimation
     Blind Source Separation Based on Signal Number Estimation
     基于源数估计的盲源分离
短句来源
  “源数估计”译为未确定词的双语例句
     A Method of Blind Source Saparation for Rotating Machinery Based on Estimation of the Number of Sources
     基于源数估计的旋转机械源盲分离
短句来源
     Method to determine the NIS based on SVD and clustering
     基于SVD-Clustering的源数估计方法
短句来源
     A dual-threshold RELAX-CLEAN estimation algorithm is proposed based on the spatial CLEAN algorithm.
     本文提出了一种基于空域CLEAN算法的双门限RELAX-CLEAN源数估计算法。
短句来源
     The existing estimation algorithms need to evaluate sampling covariance matrix and eigenvalue decomposition which has a great operation, and also need a great number of snapshots for estimating the covariance matrix, so that it is difficult to implement practically.
     现有的源数估计算法需要求取样协方差矩阵并对其进行特征值分解,因此运算量较大,而且求取样协方差矩阵需要较多的快拍数,这样造成工程实现的困难。
短句来源
     Aimed to the above disadvantage, another algorithm based on fixed threshold is put forward. The experiment shows it has lower estimation precision than the dual-threshold RELAX-CLEAN, but the operation is small and the implementation practically is easy.
     针对RELAX算法的运算量大的缺点,提出了基于固定门限的源数估计算法,该方法在估计精度上不如双门限RELAX-CLEAN算法,但是它的运算量小且易于工程实现。
短句来源
更多       
  相似匹配句对
     Blind Source Separation Based on Signal Number Estimation
     基于估计的盲分离
短句来源
     Method to determine the NIS based on SVD and clustering
     基于SVD-Clustering的估计方法
短句来源
     Bayesian Estimation Of Psychological State Number
     心理状态的Bayes估计
短句来源
     b) a G-M estimator of ω'1α, ω'2β and ω'1α+ω'2β under L (Xβ, Aα; δ21V, δ22U} respectively.
     b)G-M估计
短句来源
     A Method of Blind Source Saparation for Rotating Machinery Based on Estimation of the Number of Sources
     基于估计的旋转机械盲分离
短句来源
查询“源数估计”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  source number estimation
A new source number estimation method based on the beam eigenvalue
      
Most source number estimation methods based on the eigenvalues are decomposed by covariance matrix in MUSIC algorithm.
      
Both of the theory analysis and the simulation results show that the BEM method can estimate the source number for correlated signals and can be more effective at lower signal to noise ratios than the normal source number estimation methods.
      
A brief introduction on different principled source number estimation methods is given next.
      
First, the centralized Bayesian source number estimation algorithm is performed using all the ten sensor observations.
      
更多          


Source number is estimated according to the eigen value. Singular value decomposition of cyclic cross correlation matrix is used. The method is applicable to narrow band or wide band cyclostationary sources with coherent signals. Monte Carlo trials demonstrate that the performance of this method is better than the usual methods.

提出利用文中构造的循环互相关矩阵进行特征空间分解,并根据特征值的相对大小进行源数估计的方法.该方法适用于宽带和窄带源,并可较好地解决相干源的源数估计问题.用该方法进行源数估计在波达方向(DOA)估计中基本不增加运算量,而且在低信噪比下,仍能准确地进行源数估计.用蒙特卡洛试验证实了该方法的源数估计性能优于通常的源数估计方法.

In this paper, the well-known clustering principle was introduced into the classical method for estimating the number of sources firstly, by which a new method to determinate the number of incoherent sources based on SVD and Clustering was proposed. By means of this method, the upper limit of the number of independent sources embedded in a system can be estimated, and enough observations can be acquired, which assures all BSS algorithms to be implemented correctly in practice. The feasibility and effect of the...

In this paper, the well-known clustering principle was introduced into the classical method for estimating the number of sources firstly, by which a new method to determinate the number of incoherent sources based on SVD and Clustering was proposed. By means of this method, the upper limit of the number of independent sources embedded in a system can be estimated, and enough observations can be acquired, which assures all BSS algorithms to be implemented correctly in practice. The feasibility and effect of the proposed solution is verified by simulation and experiment afterwards.

在传统的源数估计方法基础上引入聚类分析思想 ,提出了一种基于奇异值分解的聚类不相关源数估计新方法。应用该方法 ,可以估计系统中独立源数的上界 ,并籍此获得足够维数的传感观测信号 ,保证盲源分离方法在实际应用中的正确实施。仿真以实验的结果证明了所提出的整体解决方案的可行性和有效性

Aiming at the problem caused by existence and indeterminacy of the error in data acquisition and spectral estimation in the traditional method for estimating the number of incoherent sources (NIS) based on Singular Value Decomposition (SVD), a new method to evaluate NIS based on SVD and Clustering was proposed in this paper, by which the difficulty in selecting threshold can be overcome, and the scatter distances within and between the clustering of the singular values (SV) can be optimized synchronously by...

Aiming at the problem caused by existence and indeterminacy of the error in data acquisition and spectral estimation in the traditional method for estimating the number of incoherent sources (NIS) based on Singular Value Decomposition (SVD), a new method to evaluate NIS based on SVD and Clustering was proposed in this paper, by which the difficulty in selecting threshold can be overcome, and the scatter distances within and between the clustering of the singular values (SV) can be optimized synchronously by the principlec of clustering. Some selected simulations validated the effectiveness of this method, with which the correct division of SVs according to their amplitudes can be carried out, and the NIS in a complex mechanical system can be estimated unsupervised.

针对传统的基于奇异值分解的不相关源数估计方法中,由于数据获取误差和谱估计误差及其不确定性所导致的问题,提出一种基于奇异值分解的聚类源数估计新方法.该方法借鉴聚类分析思想,克服了原方法中阈值选择的困难,并可同时优化各奇异值聚类的类内及类间分散度.实验结果证明了该方法可以自动实现奇异值量值的正确划分,从而非监督式地估计一个复杂机械系统中的不相关源数.

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关源数估计的内容
在知识搜索中查有关源数估计的内容
在数字搜索中查有关源数估计的内容
在概念知识元中查有关源数估计的内容
在学术趋势中查有关源数估计的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社