助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   混合智能预测 的翻译结果: 查询用时:0.123秒
图标索引 在分类学科中查询
所有学科
机械工业
更多类别查询

图标索引 历史查询
 

混合智能预测
相关语句
  hybrid intelligent forecasting
     Novel Hybrid Intelligent Forecasting Model and Its Application to Fault Diagnosis
     一种新的混合智能预测模型及其在故障诊断中的应用
短句来源
  “混合智能预测”译为未确定词的双语例句
     Due to the fluctuation and complexity of electromechanical equipment operation condition affected by various factors, it is difficult to use a single forecasting method to accurately describe the moving tendency.
     针对机电设备运行状态受多因素影响且变化趋势复杂、难以用单一预测方法进行有效预测的问题,提出了一种新的基于经验模式分解、支持向量机和自适应线性神经网络的混合智能预测模型.
短句来源
  相似匹配句对
     A Review of Intelligent Hybrid Systems
     智能混合系统
短句来源
     The Analyse of Hybrid Intelligence System
     浅析混合智能系统
短句来源
     Intelligent Industry Architecture
     智能工业体系
短句来源
     Intelligent Polymer Materials
     智能高分子材料
短句来源
     Hybrid Library
     混合程序库
短句来源
查询“混合智能预测”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


Due to the fluctuation and complexity of electromechanical equipment operation condition affected by various factors, it is difficult to use a single forecasting method to accurately describe the moving tendency. So a novel hybrid intelligent forecasting model based on empirical mode decomposition (EMD), support vector machines (SVMs) and adaptive linear neural network (ALNN), is proposed, where these intrinsic mode components (IMCs) are adaptively extracted via EMD from a nonstationary time series (according)...

Due to the fluctuation and complexity of electromechanical equipment operation condition affected by various factors, it is difficult to use a single forecasting method to accurately describe the moving tendency. So a novel hybrid intelligent forecasting model based on empirical mode decomposition (EMD), support vector machines (SVMs) and adaptive linear neural network (ALNN), is proposed, where these intrinsic mode components (IMCs) are adaptively extracted via EMD from a nonstationary time series (according) to the intrinsic characteristic time scales. Tendencies of these IMCs are forecasted with SVMs (respectively,) in which the kernel functions are appropriately chosen with these different fluctuations of IMCs. These forecasting results of IMCs are combined with ALNN to output the forecasting result of the original time series. The proposed model is applied to the tendency forecasting of a benchmark example and a vibration signal from machine sets, and the simulated results show that the forecasting performance (of the) hybrid model outperforms SVMs with the single-step ahead forecasting or the multi-step ahead (forecasting.)

针对机电设备运行状态受多因素影响且变化趋势复杂、难以用单一预测方法进行有效预测的问题,提出了一种新的基于经验模式分解、支持向量机和自适应线性神经网络的混合智能预测模型.首先,利用经验模式分解方法将非平稳时间序列按其内在的时间特征尺度自适应地分解为多个本征模式分量,然后根据这些分量各自趋势变化的剧烈程度选择合适的核函数,用支持向量机对其进行预测,最后通过自适应线性神经网络对这些预测分量进行自适应加权组合,得到原始序列的预测值.研究结果表明,对于标准算例和某机组振动趋势的预测,不论是单步预测还是多步预测,该模型的预测性能均好于单一的支持向量机预测方法.

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关混合智能预测的内容
在知识搜索中查有关混合智能预测的内容
在数字搜索中查有关混合智能预测的内容
在概念知识元中查有关混合智能预测的内容
在学术趋势中查有关混合智能预测的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社