助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   层次bayes网络 的翻译结果: 查询用时:0.44秒
图标索引 在分类学科中查询
所有学科
自动化技术
更多类别查询

图标索引 历史查询
 

层次bayes网络
相关语句
  hierarchical bayesian network
     Firstly, a new hierarchical Bayesian Network model is defined based on class hierarchical structure, which is used to represent large scale Bayesian network.
     首先使用类层次结构定义一种新的层次Bayes网络模型,用于表示大规模Bayes网络.
短句来源
     Finally, experiments in automatic detection and location of texts in images show the feasibility of this hierarchical Bayesian network and learning approach.
     最后将本层次Bayes网络及计算公式用于解决图像中文本的自动检测与定位问题,实验结果表明了它们的有效性.
短句来源
     Experiments in automatic detection and location of texts in images show the feasibility of this hierarchical Bayesian network and learning approach.
     将层次Bayes网络及计算公式用于解决图像中文本的自动检测与定位问题,实验结果表明了它们的有效性.
短句来源
  相似匹配句对
     Study on Hierarchy of Internet Data Collection
     论网络统计的层次
短句来源
     Network Data
     网络
短句来源
     Networking
     网络
短句来源
     A new method entitled the Comprehensive
     该方法运用网络层次
短句来源
     MCMC approach to Bayesian networks learning
     Bayes网络学习的MCMC方法
短句来源
查询“层次bayes网络”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  hierarchical bayesian network
A hierarchical Bayesian network for event recognition of human actions and interactions
      
This paper presents a method for the recognition of two-person interactions using a hierarchical Bayesian network (BN).
      
The resulting model is a hierarchical Bayesian network factored into modular component networks embedding variable-order Markov models.
      
Interestingly, the hierarchical Bayesian network can preserve more information in the case of the dataset from modular Bayesian networks.
      
In this way, we could learn the hierarchical Bayesian network from bottom to top.
      
更多          


A learning approach is proposed to solve the problems of conditional probability assignation in large scale Bayesian network. Firstly, a new hierarchical Bayesian Network model is defined based on class hierarchical structure, which is used to represent large scale Bayesian network.Then, the train data set is changed from a single table to a database composed of some database tables. And each database table corresponds to a Bayesian network block. Based on that, a formula of conditional probability is developed....

A learning approach is proposed to solve the problems of conditional probability assignation in large scale Bayesian network. Firstly, a new hierarchical Bayesian Network model is defined based on class hierarchical structure, which is used to represent large scale Bayesian network.Then, the train data set is changed from a single table to a database composed of some database tables. And each database table corresponds to a Bayesian network block. Based on that, a formula of conditional probability is developed. And each conditional probabilistic table of Bayesian network block can be calculated from the database tables respectively. Properly adjust the attribute number in each database table can assure the validity of this learning approach. Finally, experiments in automatic detection and location of texts in images show the feasibility of this hierarchical Bayesian network and learning approach.

针对大规模Bayes网络的条件概率赋值问题,提出一种学习方法.首先使用类层次结构定义一种新的层次Bayes网络模型,用于表示大规模Bayes网络.然后将训练数据集由单个数据表的形式转化成多表数据库,其中每个数据库表对应1个Bayes网络模块.在此基础上导出条件概率计算公式,从每个数据库表中算出相应的Bayes网络模块的条件概率表,由此实现对整个层次Bayes网络的概率赋值.可通过适当增加数据库表的数目来控制每个表中属性的个数,保证计算的可行性.最后将本层次Bayes网络及计算公式用于解决图像中文本的自动检测与定位问题,实验结果表明了它们的有效性.

A learning approach is proposed to solve the problems of conditional probability assignation in large scale Bayesian networks.Firstly, a new hierarchical Bayesian Network model is defined based on class hierarchical structure,which is used to represent large scale Bayesian networks.Then,the train data set is changed from a single table to a database composed of some database tables.And each database table corresponds to a Bayesian network block.Based on that,a formula of conditional probability is developed.And...

A learning approach is proposed to solve the problems of conditional probability assignation in large scale Bayesian networks.Firstly, a new hierarchical Bayesian Network model is defined based on class hierarchical structure,which is used to represent large scale Bayesian networks.Then,the train data set is changed from a single table to a database composed of some database tables.And each database table corresponds to a Bayesian network block.Based on that,a formula of conditional probability is developed.And each conditional probabilistic table of Bayesian network block can be calculated from the database tables respectively.Proper adjustment of the attribute number in each database table can assure the validity of this learning approach.Experiments in automatic detection and location of texts in images show the feasibility of this hierarchical Bayesian network and learning approach.

针对大规模Bayes网络的条件概率赋值问题,提出一种学习方法.首先使用类层次结构定义一种新的基于层次的Bayes网络模型,用于表示大规模Bayes网络.然后将训练数据集由单个数据表的形式转化成多表数据库,其中每个数据库表对应一个Bayes网络模块.在此基础上导出条件概率计算公式,从每个数据库表中算出相应的Bayes网络模块的条件概率表,由此实现对整个层次Bayes网络的概率赋值.通过适当增加数据库表的数目来控制每个表中属性的个数,保证计算的可行性.将层次Bayes网络及计算公式用于解决图像中文本的自动检测与定位问题,实验结果表明了它们的有效性.

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关层次bayes网络的内容
在知识搜索中查有关层次bayes网络的内容
在数字搜索中查有关层次bayes网络的内容
在概念知识元中查有关层次bayes网络的内容
在学术趋势中查有关层次bayes网络的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社