助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   全局最优模型 的翻译结果: 查询用时:1.131秒
图标索引 在分类学科中查询
所有学科
自动化技术
更多类别查询

图标索引 历史查询
 

全局最优模型
相关语句
  相似匹配句对
     A Model of Optimal Rate of Accumulation
     最优积累率模型
短句来源
     An Optimal Model on Inflation
     通货膨胀最优模型
短句来源
     The Global Qualitative Behavior of Epidemic Models
     流行病模型全局性态
短句来源
     S. models have been found.
     S.模型
短句来源
     model.
     模型
短句来源
查询“全局最优模型”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


Particle swarm optimization(PSO) algorithm is a stochastic global optimization technique and has become the hotspot of evolutionary computation because of its excellent performance and simplicity for implementation.In light of the fact that it is hard to determine the parameters of a constitutive model—cohesion weakening and frictional strengthening(CWFS) model,which performs excellently in modeling the extent and depth of brittle failure zone for hard rock under high in-situ stress condition,a new method is...

Particle swarm optimization(PSO) algorithm is a stochastic global optimization technique and has become the hotspot of evolutionary computation because of its excellent performance and simplicity for implementation.In light of the fact that it is hard to determine the parameters of a constitutive model—cohesion weakening and frictional strengthening(CWFS) model,which performs excellently in modeling the extent and depth of brittle failure zone for hard rock under high in-situ stress condition,a new method is presented to identify parameters of CWFS model using PSO.At first,the stochastic values of parameters are initialized and the difference in failure zone between the value computed and the datum measured is regarded as fitness value to evaluate quality of the parameters.Then the parameters are updated continually using PSO until the optimal parameters are found.Thus parameters are identified adaptively during computation.The results of applications to two real tunnels,i.e.,Mine-by tunnel in Canada and Taipingyi tunnel in China,show that the method is feasible and efficient for identifying constitutive parameters and predicting the extent and depth of brittle failure of hard rock under high in-situ stress condition with high precision.

粒子群优化(PSO)算法是一类随机全局优化技术,具有收敛速度快、规则简单、易于实现的优点。高地应力条件下硬岩本构模型参数的确定是个尚未解决的难题。以一种适用于高地应力条件下的硬岩本构模型为研究对象,提出基于PSO算法的本构模型参数辨识方法。该方法从本构模型参数的随机值出发,以破坏区的数值计算值与实测值的误差大小作为适应度来评价参数的品质,利用PSO算法规则实现模型参数的进化,搜索出全局最优的模型参数值,从而实现硬岩本构模型参数的自适应辨识。采用该方法对加拿大的Mine-by隧洞和我国的太平驿水电站引水隧洞进行了围岩本构模型参数识别,计算结果与实测情况相吻合,表明该方法是科学可行性的,具有较高的效率和精度。

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关全局最优模型的内容
在知识搜索中查有关全局最优模型的内容
在数字搜索中查有关全局最优模型的内容
在概念知识元中查有关全局最优模型的内容
在学术趋势中查有关全局最优模型的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社