助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   时间-空间域 的翻译结果: 查询用时:0.475秒
图标索引 在分类学科中查询
所有学科
数学
更多类别查询

图标索引 历史查询
 

时间空间域
相关语句
  “时间-空间域”译为未确定词的双语例句
     3) Best estimation of regionalized variables by space-time information. 4) Best estimation of spatial components and regionalized factors by space-time information.
     应用时间-空间信息对某区域化变量进行最优估计,以及应用时间-空间域的信息对空间分量及区域化因子进行最优估计。
短句来源
  相似匹配句对
     TIME DOMAIN ELECTRON SPIN RESONANCE
     时间电子自旋共振
短句来源
     Time——the Space of Development
     时间——发展的空间
短句来源
     The author defines it as consciousness of sex, time and space, and hardships;
     时间空间意识;
短句来源
     he local features in phase space and predictability are studied in this paper.
     讨论了混沌系统的时间空间的局特征。
短句来源
     Tent Spaces on Lipschitz Domains
     Lipschitz上的帐蓬空间
短句来源
查询“时间-空间域”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  space-time domain
The statistical problem of the scattering of wideband pulses by a random layered medium at normal incidence is considered in the framework of the wave approach in the space-time domain.
      
Finite-element method in the space-time domain for nonstationary electrodynamics
      
The author proposes a method for solving nonlinear heat conduction problems in which the space-time domain is divided into a series of calculation intervals with respect to time and the coordinate.
      
The result shows that six of the eight strong earthquakes were in the space-time domain of the time and space probability of strong earthquake (TSIP) prediction.
      
The prediction accuracy is 75%, the space-time domain rate of the TSIP precaution is 5%, the diagnosed value ofR is 0.70.
      
更多          


There are some shortpoints of slant stacking when calculated in time-space domain. According to the relationship between tau-p transform and Fourier transform. We provide a new method to calculate slant stacking in F-K domain. In this domain, to combine tau-p process with velocity filtering process gets easier, and high qualities can be alhieved.Based on the basic formulas of tau-p transform in F-K domain, We can do migration process directly in p-w domain to get our final imaging seismic section. Interpolation...

There are some shortpoints of slant stacking when calculated in time-space domain. According to the relationship between tau-p transform and Fourier transform. We provide a new method to calculate slant stacking in F-K domain. In this domain, to combine tau-p process with velocity filtering process gets easier, and high qualities can be alhieved.Based on the basic formulas of tau-p transform in F-K domain, We can do migration process directly in p-w domain to get our final imaging seismic section. Interpolation is used to eliminate the aliasing events in F-K space. Some of the results were examined in practical calculating.

针对时间—空间域倾斜迭加算法的一些缺点,本支根据倾斜迭加运算与富里叶变换的关系,提出在频率一波数域实现τ—p变换。在频率一波数域进行τ—p变换,还可与视速度滤波相结合,以便更有效地消除干扰波,提高处理质量。根据τ—p变换频率一波数域算法原理,提出了在τ—p域直接实现偏移处理,同时指出,为了避免假同相轴的干扰,必须进行插值处理。

To common-mid-point gathers, it can restore the plane wave response and obtain reflection coeffieents with different ray parameters by transforming seismic data from t-x domain to τ-p domain.Due to the effects of attenuation and dispersion on wave propagation,the plane wave reflection coefficients are frequency limitted,thus,accurate velocity and density profile can not be reconstructed by Carrion's matrix inversion method and other inversion methods and be applied to the interpretation of lithology and stratigraphy....

To common-mid-point gathers, it can restore the plane wave response and obtain reflection coeffieents with different ray parameters by transforming seismic data from t-x domain to τ-p domain.Due to the effects of attenuation and dispersion on wave propagation,the plane wave reflection coefficients are frequency limitted,thus,accurate velocity and density profile can not be reconstructed by Carrion's matrix inversion method and other inversion methods and be applied to the interpretation of lithology and stratigraphy. We developed Carrion's method and proposed that the linear programming inversion method is suitable to resolve the difficult problem.A good result has been obtained by this method by using single scattering approximation. The method can also be used for large offset data to invesse deep velocity and density profile.

对共中心点道集,把地震反射数据从时间—空间域(t—x)变到r—p域,可以恢复平面波响应,求出不同入射方向时的平面被反射系数序列。由于地震波传播过程中的衰减、扩散效应等,求得的平面波反射系数是有限带宽的,用一般的方法反演介质的速度、密度、波阻抗得出的结果精度很差,难以应用到岩性或地震地层学的解释。P.M.Carrion提出的应用振幅的反演方法中,对带限资料使用了矩阵反演方法,得出的结果还是不理想。本文发展了P.M、Carrion提出的方法:利用L_1模极小化问题的线性规划反演方法,首先恢复出真正的反射系数序列,然后可利用单散射近似的反射系数公式求取速度、密度分布。该方法可用于大偏移距的地震资料,反演深部的速度分布。

In this paper, the plane strain problem of a crack prpagating with arbitrary velocity in dissimilar layered media is discussed. The governing integral equations are established by using the integral transform method. Then, by the contour integration technique,the basic solution in space-time domain to the plane elastodynamic problem of the layered media and the second kind of singular integral equations for crack propagating in layered media are given in a closed form. Finally, the dynamic stress intensity factors...

In this paper, the plane strain problem of a crack prpagating with arbitrary velocity in dissimilar layered media is discussed. The governing integral equations are established by using the integral transform method. Then, by the contour integration technique,the basic solution in space-time domain to the plane elastodynamic problem of the layered media and the second kind of singular integral equations for crack propagating in layered media are given in a closed form. Finally, the dynamic stress intensity factors of the fast-propagating crack is obtained.

本文讨论了裂纹在任意层状介质中快速扩展的平面直变问题。应用积分变换方法建立了问题的控制积分方程。采用路径积分技术给出了层状介质平面弹性动力学问题的时间—空间域基本解,以封闭形式给出了层状介质中运动裂纹问题的第二类奇异积分方程组。得到了快速扩展裂纹的动态应力强度因子。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关时间-空间域的内容
在知识搜索中查有关时间-空间域的内容
在数字搜索中查有关时间-空间域的内容
在概念知识元中查有关时间-空间域的内容
在学术趋势中查有关时间-空间域的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社