助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   《数学评论》 的翻译结果: 查询用时:0.573秒
图标索引 在分类学科中查询
所有学科
图书情报与数字图书馆
数学
更多类别查询

图标索引 历史查询
 

数学评论
相关语句
  mathematical reviews
     Mathematical Reviews and Mathematics Education Document
     《数学评论》与数学教育文献
短句来源
     This paper used abstract method,for 15 classification of America "Mathematical Reviews" and "Chinese Mathematics Abstracts" to be going statistics,initially obtained nucleus of periodicals of home and abroad MR 15 classification.
     本文运用文摘法,对美国《数学评论》及《中国数学文摘》中的15类进行了统计,初步得到了国内外MR15类的核心期刊.
短句来源
     American《Mathematical Reviews》is the world famous retrieval Magzine on Mathematics Science.
     美国《数学评论》是世界上数学科学著名的检索刊物。
短句来源
     Journal Shaanxi Normol University (Natural Science Edition), Journal of Shaanxi Normal University, Natural Sciences Edition(ISSN 1001-3857) has been abstracted or indexed in STN easy, Zentralblatt MATH Database in Germany, Mathematical Reviews in USA, Zoological Record in UK and VINITI Abstracts Journal in Russia.
     通过对世界几个著名数据库收录《陕西师范大学学报》(自然科学版)(ISSN1001-3857)情况进行全面系统检索,检索结果表明,截止2003年7月底,《陕西师范大学学报》(自然科学版)从1995年以来,已被美国《数学评论》(MR)收录数学论文文摘190条;
短句来源
     In this paper, relevant knowledge of the Mathematical Reviews and its Index are mainly introduced, and some retrieval ways to look through mathematial documents of utilizing the Mathematical Reviews are furnished.
     本文着重介绍《数学评论》及其索引的有关知识,并提供利用《数学评论》查找数学文献的检索途径.
短句来源
更多       
  《 mathematical reviews 》
     American《Mathematical Reviews》is the world famous retrieval Magzine on Mathematics Science.
     美国《数学评论》是世界上数学科学著名的检索刊物。
短句来源
  “《数学评论》”译为未确定词的双语例句
     82K:05014 are the special cases of J. Riordan's identity.
     第三部份指出了《数学评论》82K:05014介绍的组合恒等式只须经过线性变换就可以从Riordan恒等式演化出来。
短句来源
     Mathematical Subject Classification is the most influential and widely-used specialized classification in the mathematical circle.
     美国《数学评论》的分类体系《数学主题分类表》(MathematicalSubjectClassification) ,是国际数学界影响最大使用最广的数学专业分类表。
短句来源
     U. S. “Mathematics Reviews” and Its Usage
     美国《数学评论》及其使用方法
短句来源
     Comments on the American Publication "Mathematics Review
     美《数学评论》使用法简介
短句来源
     Statistical Analysis of Chinese University Journals Collected by the American Mathematical Review(MR)(CD Ed.) in 2004
     美国《数学评论》光盘版2004年收录中国高校学报统计
短句来源
更多       
查询“《数学评论》”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  mathematical reviews
The purpose of this article is to review the development of the mathematical literature by briefly tracing the history of mathematical communication leading to the founding of Mathematical Reviews in 1940.
      
According to Mathematical Reviews, Dembski has not published any papers in any peer-reviewed journal devoted to information theory.
      
A glance at a few sections in Mathematical Reviews on this subject will indicate why.
      
Babu The numbers following MR denote the Mathematical Reviews numbers.
      
Member of the Editorial Committee of Mathematical Reviews, Pro fessor Einar Hille.
      
更多          


This paper gives, in very simple terms, two new proofs of Villat's formula of analytic functions in an annulus,by the properties of Schwarz integral and Poisson integral and the following representations of kernel functions:for q<|z|<1.Then the formula is generalized into n-Connected Circular domains. The final result took its concrete form and were read in 1964, earlierthan Dunducenho's which was announced in MR 34# 6047, 1967.

本文利用Schwarz积分和Poisson积分的性质及核函数的下列表示式: K_1(z,ξ_1)=(ξ_1+z)/(ξ_1-z)+sum from k=1 to ∞ ((ξ_1+q~(2k)z)/(ξ_1-q~(2k)z)+(ξ_1+q(-2k)z/(ξ_1-q~(-2k)z)),ξ_1=e~(iθ) K_2(z,ξ_2)=(ξ_2+z)/(ξ_2-z)-sum from k=1 to ∞ ((ξ_2+q~(2k)z)/(ξ_2-q~(2k)z)+(ξ_2+q(-2k)z/(ξ_2-q~(-2k)z)),ξ_2=qe~(iθ) 给出圆环内解析函数的Villat公式的两个十分简单的证明。并进而把它推广到任意有限连通的圆界区域中去。后一结果此“美国数学评论”34卷#6047(1967)介绍的Dunducenko的结果要早,我们的工作完成于1964年。

In this paper, we prove two combinatorial identities as follows where n is a natural number and y is a real number. We give a combinatorial and algebraic proof of J. Riordan's identities. And we show that the two identities given in Math. Rev. 82K:05014 are the special cases of J. Riordan's identity. At the end of this paper, we also provide three criterions——simplicity, non-trivial and intutionness, for the choice of classic combinatorial identities.

本文第一部份给出了S〔4/2;2〕和S〔1/1;1〕型的二个组合恒等式。第二部份给出了RiordanS〔3/0;3〕型恒等式之一的组合证明及其推广为S〔3/0;4〕型的代数证明。第三部份指出了《数学评论》82K:05014介绍的组合恒等式只须经过线性变换就可以从Riordan恒等式演化出来。本文最后提出了选择基本组合恒等式应考虑的三个原则,即简明性、非平凡性和直观性。

s,the Documentation and Information Centre of the Chinese Academy of Science,100080,Beijing)Abstract The papers presented are published by Chinese mathematical workers on Chinese 232kinds of peri Odical and foreign 82 kinds of periodical in 1993,the papers supportcd by national naturalscience foundation of China occupy proportion in total papers,The article gives auther's units andnameof high output,presents paper's distribution of various branches of regions for Chinese mathematicalworkers and American Mathematical...

s,the Documentation and Information Centre of the Chinese Academy of Science,100080,Beijing)Abstract The papers presented are published by Chinese mathematical workers on Chinese 232kinds of peri Odical and foreign 82 kinds of periodical in 1993,the papers supportcd by national naturalscience foundation of China occupy proportion in total papers,The article gives auther's units andnameof high output,presents paper's distribution of various branches of regions for Chinese mathematicalworkers and American Mathematical Re-views in 92.Based on the analysis and the comparison,the pa-per advances their research trends and the disparities beween Chinese mathematical science and the world advanced level.

文中介绍了我国数学工作者1993年在国内232种期刊和国外82种期刊上发表的论文及这些论文受国家自然科学基金资助的情况,给出了高产的单位和个人。介绍了我国数学工作者和1992年美国《数学评论》各分支领域的论文分布,在分析、比较的基础上,提出了我国数学工作者的研究动向及我国数学科学与世界先进水平的差距。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关《数学评论》的内容
在知识搜索中查有关《数学评论》的内容
在数字搜索中查有关《数学评论》的内容
在概念知识元中查有关《数学评论》的内容
在学术趋势中查有关《数学评论》的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社