助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   bayesian神经网络 的翻译结果: 查询用时:0.294秒
图标索引 在分类学科中查询
所有学科
动力工程
更多类别查询

图标索引 历史查询
 

bayesian神经网络
相关语句
  bayesian neural network
     Application of Bayesian Neural Network in the EPR Method for Checking Temper Embrittlement of Steam Turbine Rotor Steels
     Bayesian神经网络在EPR法检测汽轮机转子钢热脆化性能中的应用
短句来源
     Making use of Bayesian Neural network,a prediction model has been established for improving the accuracy of checking temper embrittlement of steam turbine rotor steel(30Cr2MoV) by the electrochemical potentiodynamic reaction(EPR) method.
     为提高电化学动电位再活化法(EPR)检测汽轮机转子钢(30Cr2MoV)热脆性的检测精度,利用Bayesian神经网络建立了预测模型。
短句来源
  “bayesian神经网络”译为未确定词的双语例句
     Thus the fracture appearance transition temperature of rotor steel can be predicted more accurately by means of Bayesian neural networks.
     因此,Bayesian神经网络能较准确地用来预测转子钢材料的脆性转变温度。
短句来源
  相似匹配句对
     Neural Net
     神经网络
短句来源
     Summarizing of Neural Network
     神经网络综述
短句来源
     Decision tree, neural networks and Bayesian networks are the main tools of KDD.
     决策树、神经网络Bayesian网络等是当前知识发现的重要工具。
短句来源
     The entropy of Bayesian networks
     Bayesian网的信息熵
短句来源
     The Independence Relations in Bayesian Networks
     Bayesian网中的独立关系
短句来源
查询“bayesian神经网络”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  bayesian neural network
A Bayesian neural network method for adverse drug reaction signal generation
      
Analogously to Hopfield's neural network, the convergence for the Bayesian neural network that asynchronously updates its neurons' states is proved.
      
The performance of the Bayesian neural network in four medical domains is compared with various classification methods.
      
The Bayesian neural network uses more sophisticated combination function than Hopfield's neural network and uses more economically the available information.
      
The "naive" Bayesian classifier typically outperforms the basic Bayesian neural network since iterations in network make too many mistakes.
      
更多          


Making use of Bayesian Neural network,a prediction model has been established for improving the accuracy of checking temper embrittlement of steam turbine rotor steel(30Cr2MoV) by the electrochemical potentiodynamic reaction(EPR) method.A model has been established that reflects the relationship between fracture appearance transition temperature(FATT_(50)) of rotor steel and electrochemical eigenvalues,temperature of the electrolyte,the steel's chemical ingredients,J parameter and crystal granularity N.The model's...

Making use of Bayesian Neural network,a prediction model has been established for improving the accuracy of checking temper embrittlement of steam turbine rotor steel(30Cr2MoV) by the electrochemical potentiodynamic reaction(EPR) method.A model has been established that reflects the relationship between fracture appearance transition temperature(FATT_(50)) of rotor steel and electrochemical eigenvalues,temperature of the electrolyte,the steel's chemical ingredients,J parameter and crystal granularity N.The model's regularly trained Bayesian Neural Network was constructed by making use of data concerning the ratio of activating to reactivating peak current densities(I_a/I_r) of rotor steel(30Cr2MoV),temperature of the electrolyte,the rotor's steel chemical ingredient,J parameter and the crystal's granularity parameter N,obtained by the EPR method under sixty different temperature conditions of the picric electrolyte.The trained neural network was then used to predict the fracture appearance transition temperature of some new rotor steel material.Results showed that training errors of the neural network and verifying test errors were all within a scatter band of ±20℃,which is smaller than that obtainable by the multiple linear regression method.Thus the fracture appearance transition temperature of rotor steel can be predicted more accurately by means of Bayesian neural networks.Figs 3,tables 3 and refs 13.

为提高电化学动电位再活化法(EPR)检测汽轮机转子钢(30Cr2MoV)热脆性的检测精度,利用Bayesian神经网络建立了预测模型。根据EPR法测定的60组不同苦味酸电解液温度下,30Cr2MoV转子钢的活化峰电流密度与再活化峰电流密度比(Ia/Ir)的数据、电解液温度、转子钢化学成分J参数和晶粒度参数(N),采用Bayesian正则化训练的神经网络,建立了转子钢脆性转变温度(FATT50)与电化学特征值、电解液温度、转子钢化学成分J参数和晶粒度参数(N)之间的映射模型。利用训练好的网络预测了新的转子钢材料的脆性转变温度。结果表明:网络的训练误差和检验误差都在±20℃范围内,小于多元线性回归法得到的误差。因此,Bayesian神经网络能较准确地用来预测转子钢材料的脆性转变温度。图3表3参13

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关bayesian神经网络的内容
在知识搜索中查有关bayesian神经网络的内容
在数字搜索中查有关bayesian神经网络的内容
在概念知识元中查有关bayesian神经网络的内容
在学术趋势中查有关bayesian神经网络的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社