助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   速度变换矩阵 的翻译结果: 查询用时:0.007秒
图标索引 在分类学科中查询
所有学科
力学
更多类别查询

图标索引 历史查询
 

速度变换矩阵
相关语句
  velocity transform matrix
     THE VELOCITY TRANSFORM MATRIX SYNTHESIS METHOD IN DYNAMICS OF GENERALIZED MULTIBODY SYSTEMS
     广义多体系统动力学的速度变换矩阵综合法
短句来源
     With the aid of the dynamic matrixes of each rigid body in its uncoupled system and the velocity transform matrix for a rigid multibody system, the dynamic equations of the coupled system can be obtained by the matrix operations.
     利用该方法,可根据无耦合单刚体的动力学参数和系统的速度变换矩阵通过矩阵运算获得多刚体系统的动力学方程。
短句来源
  “速度变换矩阵”译为未确定词的双语例句
     In this paper the essence of dynamic mechanics for Lagrange equation is discussed. It is indicated that after a speed's transform matrix, the Lagrange equation is an expressinon form of the second Newton's law.
     对广泛应用的Lagrange方程的动力学本质做了探讨,指出在引入速度变换矩阵后,Lagrange方程实际上是牛顿第二定律的一种表示方式;
短句来源
     Because the transform matrix of a speed is introduced, the Lagrange equation may be set up expediently. This method provides a way for solving the problem of dynamic mechanics.
     由于引入了速度变换矩阵,Lagrange方程可以方便地在任意的坐标系中建立,对动力学问题的求解提供了一个途径。
短句来源
     This paper constructs the speed transformation matrix and the counter speed transformation matrix, which is used for solution to the cubic Poulzmil equation. And the result obtained from it is the same as the dynamics generalized equation.
     论文构建了速度变换矩阵和反变换矩阵,用三阶玻尔茨曼方程求解,所得结果与动力学普遍方程是一致的。
短句来源
  相似匹配句对
     Speed Devils
     魔力速度
短句来源
     TFE VELOCITY OF WATER WAVE
     水波的速度
短句来源
     THE VELOCITY TRANSFORM MATRIX SYNTHESIS METHOD IN DYNAMICS OF GENERALIZED MULTIBODY SYSTEMS
     广义多体系统动力学的速度变换矩阵综合法
短句来源
     Four Dimensional Perspective Transformation Matrix
     四维透视的变换矩阵
短句来源
查询“速度变换矩阵”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


In this paper,absolute coordinates are used to define the position of each body,the kinematic joints between bodies and forces acting on or between bodies. A general formulation of velocity transformation is presented. The differential equations of motion of closedloop multibody systems are firstly established in terms of relative coordinates by means of the mullspace of constraint Jacobian matrix,then,they are derived in the form of canonical equation.

采用绝对坐标定义系统中各刚体的位置,刚体间的运动副及作用在刚体上或刚体间的力,给出了求速度变换矩阵的一般方法.经过约束方程的雅可比矩阵的零空间,用相对坐标建立了多体回路系统的运动微分方程,并进而表示成正则运动方程的形式.

The Matrix transform method for dynamic analysis of rigid multibody systems is presented in the paper. This method is based on the Lagrange multiplier method, but the resulting dynamic equations do not include the Lagrange multipliers and constraint forces. With the aid of the dynamic matrixes of each rigid body in its uncoupled system and the velocity transform matrix for a rigid multibody system, the dynamic equations of the coupled system can be obtained by the matrix operations. The method is especially...

The Matrix transform method for dynamic analysis of rigid multibody systems is presented in the paper. This method is based on the Lagrange multiplier method, but the resulting dynamic equations do not include the Lagrange multipliers and constraint forces. With the aid of the dynamic matrixes of each rigid body in its uncoupled system and the velocity transform matrix for a rigid multibody system, the dynamic equations of the coupled system can be obtained by the matrix operations. The method is especially suitable to programming dynamic analysis by computers. A rigid multibody system is illustrated in the end of the paper.

该文提出了求解多刚体系统动力学问题的矩阵变换法,是由带不定乘子的拉格朗日方程为基础推导得到的,其中不含拉格朗日不定乘子和约束反力。利用该方法,可根据无耦合单刚体的动力学参数和系统的速度变换矩阵通过矩阵运算获得多刚体系统的动力学方程。该方法主要面向计算机实现程式化的算法,系统动力方程可由计算机自动生成。文末给出了一个多刚体系统动力求解的例子。

The concepts of generalized multibody systems and velocity transform matrix and a new form of acceleration transform are presented in the paper. Based on the Lagrange multiplier method, a new method for dynamic analysis of complicated systems is developed, that is, the velocity transform matrix synthesis method for generalized multibody systems. The resulting dynamic equations do not include the Lagrange multipliers and constraint forces. With the aid of the dynamic matrixes of each uncoupled generalized body...

The concepts of generalized multibody systems and velocity transform matrix and a new form of acceleration transform are presented in the paper. Based on the Lagrange multiplier method, a new method for dynamic analysis of complicated systems is developed, that is, the velocity transform matrix synthesis method for generalized multibody systems. The resulting dynamic equations do not include the Lagrange multipliers and constraint forces. With the aid of the dynamic matrixes of each uncoupled generalized body and the velocity transform matrix for a generalized multibody system, the dynamic equations of the coupled system are obtained by matrix operations. The method is computer-oriented and easy to be coded. An example is provided to illustrate the proposed method.

文中提出了广义多体系统和速度变换矩阵的概念,提出了一种新的加速度变换关系,以带不定乘子的拉格朗日方程为基础推导得到了求解复杂系统动力学问题的一种新方法,即广义多体系统的速度变换矩阵综合法。利用该方法,可根据无耦合广义体的动力学参数和系统的速度变换矩阵直接获得广义多体系统的动力学方程,其中不含拉格朗日不定乘子和约束反力,且方程中逆矩阵求解的维数等于系统的自由度数,因而有利于提高计算效率。该方法主要面向计算机实现程式化的算法,系统的动力方程可以由计算机自动完成运算,从而避免了繁琐的解析推导工作。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关速度变换矩阵的内容
在知识搜索中查有关速度变换矩阵的内容
在数字搜索中查有关速度变换矩阵的内容
在概念知识元中查有关速度变换矩阵的内容
在学术趋势中查有关速度变换矩阵的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社