助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   切线多边形的 的翻译结果: 查询用时:0.008秒
图标索引 在分类学科中查询
所有学科
数学
更多类别查询

图标索引 历史查询
 

切线多边形的
相关语句
  tangent polygon
     C~5 CONTINUOUS RATIONAL SPLINE CURVE WITH GIVEN TANGENT POLYGON
     带有给定切线多边形的C~5连续有理样条曲线
短句来源
     C~2 and C~3 Continuous Bézier Spline Curve with Given Tangent Polygon
     带有给定切线多边形的C~2和C~3 Bzier闭样条曲线
短句来源
     Closed Bézier Curve With Given Tangent Polygon
     带有给定切线多边形的三次Bézier闭曲线
短句来源
     CLOSED C-BEZIER CURVE AND B-TYPE SPLINE CURVE WITH GIVEN TANGENT POLYGON
     带有给定切线多边形的C-Bézier闭曲线和B-型样条闭曲线
短句来源
     Because of the importing of shape parameter λ and tangent control parameter λ_1 , we can change the location in which the curve is tangent to the give polygon and adjust the approaching degree of the curve to its tangent polygon at the same time.
     由于形状控制参数λ和切点控制参数λ_i的引入,使得既能改变曲线与切线多边形相切的位置,又能改变曲线与切线多边形的接近程度。
短句来源
更多       
  “切线多边形的”译为未确定词的双语例句
     B-SPLINE CURVES WITH GIVEN TANGENT POLYGONS
     带有给定切线多边形的B-样条曲线
短句来源
     C~2 Continuous C-B-spline Curves with Given Tangent Polygons
     带有给定切线多边形的C~2连续的C-B样条曲线
短句来源
     β-Spline Curves with given tangent polygons
     带有给定切线多边形的β样条曲线
短句来源
     NURBS Spline Curves with Given Tangent Polygons
     带有给定切线多边形的保形NURBS样条曲线
短句来源
     SHAPE PRESERVING RATIONAL CUBIC B-SPLINE CURVES WITH GIVEN TANGENT POLYGONS
     带有给定切线多边形的保形有理三次B样条曲线
短句来源
更多       
  相似匹配句对
     B-SPLINE CURVES WITH GIVEN TANGENT POLYGONS
     带有给定切线多边形的B-样条曲线
短句来源
     β-Spline Curves with given tangent polygons
     带有给定切线多边形的β样条曲线
短句来源
     A Method of Drawing Quadric Curve Tangents
     二次曲线的切线作法
短句来源
     The Tangent of a Plane Curve
     平面曲线的切线
短句来源
     TRIANGULATION OF A POLYGON AND ITS APPLICATION
     多边形的三角剖分及应用
短句来源
查询“切线多边形的”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


A closed shape preserving rational cubic B-spline curve with given tangent polygon is presented and part of its weight factors can be given by choosing the positions of the contact points. A shape preserving rational cubic B-spline interpolation curve is derived. Two examples are given.

本文给出了带有给定切线多边形的保形有理三次B样条曲线,其部分权因子可通过选取切点的位置来确定。由此方法还导出了保形有理三次B样条插值曲线。最后,给出了两个例子。

The mathematical description of chain wheel drives with two fixed non-cricular wheels,a transmission chain of constant length and g give non costant velocity ratio leads to a system of nonlinear functional equations.It seems impossible to solve this equations ,but we can construct a set of tangents of thesse wheels by kinematic methods.The desired curve can be approximated by constructing spline curve.This paper considers piecewise raional cubic Bezier curve which has all these tangents as tangents,the curve...

The mathematical description of chain wheel drives with two fixed non-cricular wheels,a transmission chain of constant length and g give non costant velocity ratio leads to a system of nonlinear functional equations.It seems impossible to solve this equations ,but we can construct a set of tangents of thesse wheels by kinematic methods.The desired curve can be approximated by constructing spline curve.This paper considers piecewise raional cubic Bezier curve which has all these tangents as tangents,the curve is G 2 continuous and shape preserving.

非圆链传动中,两链轮分度线为非圆形,该曲线数学表达式是一个非线性函数方程组,严格求解这一函数方程组似乎毫无希望,但是依据动力学的方法可以构造此曲线的切线系,即一切线多边形。从而将这一问题转化为求与切线多边形每条边相切的逼近曲线。

This paper proposes an approach of constructing planar piecewise Bézier curve of 4th or 5th degree with all edges tangent to a given control polygon and the curve segments are joined together with C 2 and C 3 continuity. The segmented Bézier curves are all shape preserving to their tangent polygon. Finally, a few numerical examples illustrate that the method given in this paper is effective for CAGD.

讨论与给定切线多边形相切的分段四次和五次 Bézier曲线 ,所构造的曲线是 C2 和 C3连续的 ,且对切线多边形是保形的 .曲线上的所有 Bézier曲线段的控制顶点由切线多边形的顶点直接计算产生 .最后实例表明 ,本文的方法是有效的 .

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关切线多边形的的内容
在知识搜索中查有关切线多边形的的内容
在数字搜索中查有关切线多边形的的内容
在概念知识元中查有关切线多边形的的内容
在学术趋势中查有关切线多边形的的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社