助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   周期芽 的翻译结果: 查询用时:0.009秒
图标索引 在分类学科中查询
所有学科
更多类别查询

图标索引 历史查询
 

周期芽
相关语句
  periodic bud
     Lastly, the corresponding relation of M-J between a parameter c in an attractive periodic bud of the Mandelbrot set and image structure of the Julia sets on dynamical plane are presented, and a recursive formula on periodic orbits of M-J and characteristic images on multiple structure is given. All results show a better understanding on the structure of M-J sets.
     最后给出由Mandelbrot集参数平面上某个吸引周期芽苞中的参数与动力平面上相应Julia集图像结构之间的对应关系 ,并给出M J周期轨道的递归公式和多重结构特征图的猜想 .
短句来源
  “周期芽”译为未确定词的双语例句
     Multiplier Periodic Buds of Complex Mapping f(z,c)=z~(-2)+c
     复映射f(z,c)=z~(-2)+c倍周期芽苞Julia集的标度性
短句来源
     Mandelbrot Set's Multiplier Periodic Buds in Complex Mapping z←z~(-2)+c
     复映射z←z~(-2)+c广义M集倍周期芽苞标度性
短句来源
     A Series Conjectures of M-J Chaos-Fractal Image Construction by the Periodic Buds Fibonacci Sequence
     周期芽苞Fibonacci序列构造M-J混沌分形图谱的一族猜想
短句来源
     When some geometrical dimensions were defined in full Julia sets corresponding with super attracting periodic points in the Mandelbrot sets, approximate scaling invariable factor α was computed. Those qualitatively demonstrate scaling invariance of M J chaos fractal images. Furthermore, the topological invariance on the Fibonacci sequence of the periodic buds was discovered.
     通过在M 集上的超吸引周期点所对应的充满Julia集中定义一些几何尺寸 ,求出J 集的近似标度不变因子α ,定性说明了M J混沌分形图谱标度不变的特性· 同时 ,发现Mandelbrot集周期芽苞的Fibonacci序列的拓扑不变性 ,阐述了Fibonacci序列是通向混沌的又一途径 ,为更好地了解M J混沌分形图谱的结构奠定了理论基础·
短句来源
     Researches on the Topological Invariable Fibonacci Sequence of the Periodic Buds in the General Mandelbrot Sets
     广义M-集周期芽苞Fibonacci序列的拓扑不变性
短句来源
更多       
  相似匹配句对
     A BRIEF DISCUSSION OF CYCLE
     周期浅析
短句来源
     The Studying of the Period Bud Sequence on M Set
     M分形集周期苞嵌套规律的研究
短句来源
     the investment cycle;
     投资周期;
短句来源
     Researches on the Topological Invariable Fibonacci Sequence of the Periodic Buds in the General Mandelbrot Sets
     广义M-集周期苞Fibonacci序列的拓扑不变性
短句来源
     , Ph.
     竹Ph.
短句来源
查询“周期芽”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


Fractal images from mapping f 1(z)=z 2+c in the complex C plane and complex Z plane are attracting attention of many researchers. Moreover, scholars are investigating the fractals constructed by mapping f 2(z)=z α+c (α∈R 1) The M fractal images generated by mapping f 3(z)=z w+c(w=α+iβ;α,β∈R 1) are explored. And then the basic mathematic features of f 3 are analyzed, the image characteristics of M sets of f 3 and the arrangement orders of attracting period buds adsorbed on the...

Fractal images from mapping f 1(z)=z 2+c in the complex C plane and complex Z plane are attracting attention of many researchers. Moreover, scholars are investigating the fractals constructed by mapping f 2(z)=z α+c (α∈R 1) The M fractal images generated by mapping f 3(z)=z w+c(w=α+iβ;α,β∈R 1) are explored. And then the basic mathematic features of f 3 are analyzed, the image characteristics of M sets of f 3 and the arrangement orders of attracting period buds adsorbed on the boundary of the main M sets are studied, and several conjectures about general M sets of complex mapping f 3 are suggested.

映射f1(z)=z2+c在参数平面C及动力平面Z上产生的分形图象使许多研究人员对复动力系统的迭代重新产生了浓厚的兴趣.学者们除了对f1构造分形进行广泛讨论外,又对f2(z)=zα+c(α∈R1)构造分形进行了深入的讨论.文中提出用复映射f3(z)=zw+c(w=α+iβ;α,β∈R1)构造分形,分析了该映射的基本数学特点,探讨了C平面上f3M集的图象特征,以及吸附在M集边界上的吸引周期芽苞排列方式,提出复映射f3广义M集的四个猜想

A series of general Mandelbrot sets of the rational functions with one parameter coming from Newton's method were constructed. The relationship between the general Mandelbrot sets and the common Mandelbrot sets was discussed. The boundaries of these general Mandelbrot sets and two formulas for calculating the number of period of general Mandelbrot sets were given out. A new way was provided to develop the Mandelbrot and Julia sets.

利用Newton 法对应的有理函数族给出一系列新的广义Mandelbrot 集和Julia 集,通过计算机研究了它们与典型Mandelbrot 集和Julia 集之间的关系,并对Mandelbrot 集与Julia 集之间的关系进行了分析,解析分析了广义Mandelbrot 集的有界性、芽苞周期和不同周期芽苞个数,为Mandelbrot 集和Julia 集的发展提供了新的思路·

The inner structure of the general Mandelbrot sets generated by the complex map z←z α+c (α<0)was studied.A series of families of chaos fractal images were generated by using the escape time algorithm. The escaping area was embedded in stable area by making many computational mathematic experiments .Periodic numbers of stable area and the numbers and position of the periodic buds were got by solving algebraic equations. This presents a better understanding on the structure of the Mandelbrot sets.Furthermore,the...

The inner structure of the general Mandelbrot sets generated by the complex map z←z α+c (α<0)was studied.A series of families of chaos fractal images were generated by using the escape time algorithm. The escaping area was embedded in stable area by making many computational mathematic experiments .Periodic numbers of stable area and the numbers and position of the periodic buds were got by solving algebraic equations. This presents a better understanding on the structure of the Mandelbrot sets.Furthermore,the topological invariance on the Fibonacci sequence of the periodic buds was discovered. The Fibonacci sequence is another way to the chaos except three commonly accepted ways to the chaos. The Fibonacci sequence can be used in the encryption,compression and storage of data.

研究了复映射z←zα+c(α <0 )所产生的广义Mandelbrot集 ,利用逃逸时间算法绘制广义M 集混沌分形图谱 ,经大量计算机数学实验 ,得知逃逸区嵌于稳定区中 ,并由此得出稳定区的周期数·同时利用代数方程解出周期芽苞的数量及位置 ,为更好的了解M 集的结构提供了理论依据·另外作者发现M 集周期芽苞的Fibonacci序列的拓扑不变性 ,并在目前公认的通向混沌的三种途径的基础上 ,阐述了Fibonacci序列是通向混沌的又一途径 ,为建立新的数据加密、压缩、存储等方法提供了理论基础

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关周期芽的内容
在知识搜索中查有关周期芽的内容
在数字搜索中查有关周期芽的内容
在概念知识元中查有关周期芽的内容
在学术趋势中查有关周期芽的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社