助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   combination algorithm 在 自动化技术 分类中 的翻译结果: 查询用时:0.008秒
图标索引 在分类学科中查询
所有学科
自动化技术
计算机软件及计算机应用
电力工业
无线电电子学
金属学及金属工艺
化学
数学
水利水电工程
动力工程
更多类别查询

图标索引 历史查询
 

combination algorithm
相关语句
  组合算法
    The Study on Genetic Optimization and Related Combination Algorithm for Remote Sensing Data Processing
    遥感数据处理的遗传优化及其组合算法研究
短句来源
    Application of Genetic Algorithm/Tabu Search Combination Algorithm in Generating Unit Commitment
    遗传/禁忌组合算法在发电机组优化组合中的应用
短句来源
    A new enhanced combination algorithm for NBP network.
    一种新的NBP网络增强组合算法
短句来源
    Two fusion methods is proposed under different situations are proposed with evidence combination theory. One is the combination algorithm of results output by multi-classifier.
    用证据组合理论融合多源信息时,提出了在两种不同情况的融合算法:其一,多分类器输出结果的组合算法,取出同一对象的不同分类特征组,对所有的分类特征组分别设计出具有不同分类能力的神经网络分类器,并用遗传算法训练神经网络;
短句来源
    A new intersection-based clustering combination algorithm was presented, which imitates the ways of voting.
    提出一种基于交集的聚类组合算法,借鉴了选举投票的思想。
短句来源
更多       
  “combination algorithm”译为未确定词的双语例句
    Decomposition and Combination Algorithm for Training Neural Networks
    神经网络训练的分解重组算法
短句来源
    Integrated model for predicting burning through point of sintering process based on optimal combination algorithm
    基于最优组合算法的烧结终点集成预测模型
短句来源
    A Combination Algorithm for Structural Optimization Based on Ge netic Algorithm and Gradient Algorithm
    基于遗传算法和梯度算法的一种结构优化混合方法
短句来源
    Novel Chaos Immune Optimization Combination Algorithm
    混沌免疫优化组合算法
短句来源
    The analysis of the generalized property and sample error shows that the enhanced combination algorithm can heighten the study speed and improve individual error.
    通过对个体样本误差分布、泛化特性等方面的实例分析表明,该算法具有良好的泛化特性,既提高了样本学习速度,又改善了样本个体误差.
短句来源
更多       
查询“combination algorithm”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  combination algorithm
Combination algorithm for the solution of one location problem
      
The Alternating Randomized Combination algorithm is presented for searching for high probability partition pairs.
      
One combination algorithm (PIXI >amp;amp; osteoporosis indices of risk (OSIRIS)) performed best by minimising misclassification (10% non-osteoporotic, 10% osteoporotic) and reducing requirement for central DXA to 36%.
      
Shape and features from the MTT are then integrated at the decision level, by a classifier combination algorithm.
      
In presence of actual data dependence, the combination algorithm provided by the traditional conditional independence hypothesis is shown to be nonrobust leading to various inconsistencies.
      
更多          


The network decomposition and combination algorithm is proposed, with which a nonlinearly separable problem can be decomposed into several linearly separable sub problems, which can be easily realized by sub nets. Then the sub nets are combined to form a network, which can be efficiently trained to solve the nonlinearly separable problem. This algorithm's convergence is proved. Some example studies were carried out. It was shown that this algorithm, which could be used to obtain hidden objects...

The network decomposition and combination algorithm is proposed, with which a nonlinearly separable problem can be decomposed into several linearly separable sub problems, which can be easily realized by sub nets. Then the sub nets are combined to form a network, which can be efficiently trained to solve the nonlinearly separable problem. This algorithm's convergence is proved. Some example studies were carried out. It was shown that this algorithm, which could be used to obtain hidden objects and determine number of hidden units in the hidden layer, is a very efficient and fast algorithm for training neural networks.

本文介绍了把线性不可分问题分解为一系列线性可分子问题、对线性不可分问题进行求解的网络分解重组算法.还证明了该算法的收敛性.实例研究表明:该算法不仅可以得到神经网络的隐层空间目标和隐层单元数,而且提高了对线性不可分问题的求解速度,因此是一个非常有效的神经网络训练算法.

In recent years, numerous multisensor data fusion systems have been developed for wide applications. There are many algorithms in multisensor data attribute fusion. This paper describes the main features of the evidential combination algorithm implemented in our research. In the Bayesian approach, this theory supports the representation of uncertain information and provides a technique for combining it. The D S technique does not require prior probabilities nor does it need to know the capability of...

In recent years, numerous multisensor data fusion systems have been developed for wide applications. There are many algorithms in multisensor data attribute fusion. This paper describes the main features of the evidential combination algorithm implemented in our research. In the Bayesian approach, this theory supports the representation of uncertain information and provides a technique for combining it. The D S technique does not require prior probabilities nor does it need to know the capability of each source. The technique actually focuses on the probability of a collection of points belonging to the sample space, whereas the classical probability theory is interested in the probability of the individual points. A digital simulation has been done to demonstrate the capability of the attribute fusion algorithm.

近年来,许多领域都在进行多传感器数据融合技术的研究。多传感器数据的属性融合有很多算法,最常用的算法是贝叶斯决策检验法,国际上已提出将证据理论用于数据融合,但在这方面的理论基础还不完善。本文研究了证据理论在多传感器数据融合中的应用。Dempster-Shafer方法是对Bayes决策检验法的推广,证据理论比概率论满足更弱的公理系统,并且在区分不确定与不知及精确反映证据收集过程等方面显示了很大的灵活性。文中阐述了D-S证据理论的数学性质,给出了可信度公理及D-S综合规则,并进行了计算机仿真实验,实验结果说明这种判决方法非常实用,用于数据融合算法非常有效

A genetic algorithm and tabu search(GA/TS) combination algorithm based on studying the standard GA and TS.is presented.The presented method has characteristics of fast search,easy convergence and strong robustness.GA/TS is used to determine unit commitment schedules of a real power system It is proved that this technique is efficient and prospective.

在研究遗传算法 (GA)和禁忌算法 (TS)的基础上 ,提出一种采用遗传 /禁忌组合算法 (GA/TS)的策略 ,并将其应用于发电机组的优化组合中 ,同时用算例证明该方法的有效性和应用前景。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关combination algorithm的内容
在知识搜索中查有关combination algorithm的内容
在数字搜索中查有关combination algorithm的内容
在概念知识元中查有关combination algorithm的内容
在学术趋势中查有关combination algorithm的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社