助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   plane central region 在 力学 分类中 的翻译结果: 查询用时:0.568秒
图标索引 在分类学科中查询
所有学科
力学
仪器仪表工业
更多类别查询

图标索引 历史查询
 

plane central region
相关语句
  光滑中心
    Nonlinear Analysis of Corrugated Diaphragm with Plane Central Region under Uniform Load
    均布载荷作用下具有光滑中心波纹膜片的非线性分析
短句来源
    The corrugated shells with a plane central region and toothed or trapezoidal corrugation under uniform or concentrated load are studied by utilizing the nonlinear theory of large deflection of shallow conical shells.
    应用扁锥壳的非线性大挠度理论,研究了在均布载荷和中心集中载荷下,具有光滑中心的锯齿形和梯形波纹壳。
短句来源
    Using the simplified Reissner's equation of axisymmetric shells of revolution, the nonlinear bending of a corrugated diaphragm with a plane central region under uniform load is investigated.
    采用轴对称旋转壳体的简化Reissner方程 ,研究了在均布载荷作用下具有光滑中心波纹膜片的非线性弯曲问题。
短句来源
  光滑中心
    Nonlinear Analysis of Corrugated Diaphragm with Plane Central Region under Uniform Load
    均布载荷作用下具有光滑中心波纹膜片的非线性分析
短句来源
    The corrugated shells with a plane central region and toothed or trapezoidal corrugation under uniform or concentrated load are studied by utilizing the nonlinear theory of large deflection of shallow conical shells.
    应用扁锥壳的非线性大挠度理论,研究了在均布载荷和中心集中载荷下,具有光滑中心的锯齿形和梯形波纹壳。
短句来源
    Using the simplified Reissner's equation of axisymmetric shells of revolution, the nonlinear bending of a corrugated diaphragm with a plane central region under uniform load is investigated.
    采用轴对称旋转壳体的简化Reissner方程 ,研究了在均布载荷作用下具有光滑中心波纹膜片的非线性弯曲问题。
短句来源
查询“plane central region”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  plane central region
Chebyshev polynomials are used to solve the problem of large deflection for corrugated circular plates with a plane central region under arbitrary loads based on the nonlinear bending theory of anisotropic circular plates.
      


The corrugated shells with a plane central region and toothed or trapezoidal corrugation under uniform or concentrated load are studied by utilizing the nonlinear theory of large deflection of shallow conical shells. The elastic characteristics of corrugated shells are obtained by using the perturbation and power series method. The theoretical results in this paper agree with previous experimental results.

应用扁锥壳的非线性大挠度理论,研究了在均布载荷和中心集中载荷下,具有光滑中心的锯齿形和梯形波纹壳。采用摄动法和幂级数方法,得到了波纹壳的弹性特征。本文的解答符合实验结果。

Using the simplified Reissner's equation of axisymmetric shells of revolution, the nonlinear bending of a corrugated diaphragm with a plane central region under uniform load is investigated. The nonlinear boundary value problem of the corrugated diaphragm reduces to the nonlinear integral equations by applying the method of Green's function. To solve the integral equations, a so-called interpolated parameter being important to prevent divergence is introduced into the iterative scheme. Computation shows...

Using the simplified Reissner's equation of axisymmetric shells of revolution, the nonlinear bending of a corrugated diaphragm with a plane central region under uniform load is investigated. The nonlinear boundary value problem of the corrugated diaphragm reduces to the nonlinear integral equations by applying the method of Green's function. To solve the integral equations, a so-called interpolated parameter being important to prevent divergence is introduced into the iterative scheme. Computation shows that when loads are small, any value of interpolated parameter can assure the convergence of iteration. Interpolated parameter equal or almost equal to 1 yields a faster convergence rate, when loads are large, interpolated parameter cannot be taken too large in order to assure convergence. The characteristic curves of the corrugated diaphragm are given. The obtained characteristic curves are available for reference to design. It can be concluded that when loads are small, the characteristic curves are approximately linear, when loads are large, the characteristic curves become bent upward and are obviously nonlinear. The solution method in this paper can be applied to corrugated shells of arbitrary diametral sections.

采用轴对称旋转壳体的简化Reissner方程 ,研究了在均布载荷作用下具有光滑中心波纹膜片的非线性弯曲问题。应用格林函数方法 ,波纹膜片的非线性边值问题化为了非线性积分方程的求解。为了求解积分方程并防止发散 ,一个插值参数被引入到迭代格式中。计算表明 ,当载荷很小时 ,任何插值参数值均能保证迭代的收敛性 ,取插值参数值接近或等于 1获得较快的收敛速度 ,而当载荷较大时 ,插值参数值不能取得过大。绘出了波纹膜片的特征曲线 ,得到的特征曲线可供设计参考。可以断言 ,当载荷不大时 ,特征曲线是近似线性的 ,随着载荷的增大 ,特征曲线开始向上弯曲 ,明显偏离线性。本文中提出的解决方法适应于任意轴向截面的波纹壳体

By using the large deflection theory of axisymmetric shallow shells of revolution, the nonlinear stability of a corrugated diaphragm under arbitrary load and boundary conditions is investigated. The nonlinear boundary value problem of the corrugated diaphragm reduces to the nonlinear integral equations using Green’s function. To solve the integral equations, expansion method is used to obtain Green’s function. Then the integral equations are reduced to the form with degenerate core by expanding Green’s function...

By using the large deflection theory of axisymmetric shallow shells of revolution, the nonlinear stability of a corrugated diaphragm under arbitrary load and boundary conditions is investigated. The nonlinear boundary value problem of the corrugated diaphragm reduces to the nonlinear integral equations using Green’s function. To solve the integral equations, expansion method is used to obtain Green’s function. Then the integral equations are reduced to the form with degenerate core by expanding Green’s function into a series of characteristic function. Therefore, the integral equations become nonlinear algebraic equations. Newton’s iterative method is utilized to solve the nonlinear algebraic equations. To guarantee the convergence of the iterative method, the central deflection is taken as the control parameter. Corresponding loads are obtained by increasing deflection step by step. As a numerical example, the local instability phenomenon of corrugated diaphragm with plane central region and three corrugations is studied. The snapping instability of corrugated diaphragm because of existence of defect is discussed, which is analogous to the total instability phenomenon in shallow spherical shells. The present work is expected to be useful for design of corrugated diaphragms.

应用轴对称旋转扁壳的基本方程,研究了在任意载荷作用下各种边界条件的波纹膜片的非线性稳定问题。采用格林函数方法,将扁壳的非线性微分方程组化为非线性积分方程组。再使用展开法求出格林函数,即将格林函数展开成特征函数的级数形式,积分方程就成为具有退化核的形式,从而容易得到非线性代数方程组。应用牛顿法求解非线性代数方程组时,为了保证迭代的收敛性,选取位移作为控制参数,逐步增加位移,求得相应的载荷。作为算例,首先研究了带中心平台三波纹膜片的局部失稳现象,然后讨论了由于缺陷的存在,波纹膜片有可能出现的极值点失稳,这是一种类似扁球壳的总体失稳现象。解答可供波纹膜片的设计参考。

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关plane central region的内容
在知识搜索中查有关plane central region的内容
在数字搜索中查有关plane central region的内容
在概念知识元中查有关plane central region的内容
在学术趋势中查有关plane central region的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社