At last, we use Pro/Engineer to build 3D model for key parts of new design and to proceed virtual assembly, check out whether the design right or not on assembly process and space motion, and correcting the error is to shorten the development cycle of product and save cost.

It is very significant to study the calcareous sand for supervision of design、construction and security check. So is to the development of our politics and economy.

Referring to main factors of affecting highpressure jet sprouting quality, analyze present quality checking method and put forward the necessity and feasibility of studying highpressure jet sprouting quality check and control.

This paper is a supplement to the author's previous paper "The Constants and Analysis of Rigid Frames", published in the first issue of the Journal. Its purpose is to amplify as well as to improve the method of propagating joint rotations developed, separately and independently, by Dr. Klouěek and Prof. Meng, so that the formulas are applicable to rigid frames with non-prismatic bars and of closed type. The method employs joint propagation factor between two adjacent joints as the basic frame constant and the...

This paper is a supplement to the author's previous paper "The Constants and Analysis of Rigid Frames", published in the first issue of the Journal. Its purpose is to amplify as well as to improve the method of propagating joint rotations developed, separately and independently, by Dr. Klouěek and Prof. Meng, so that the formulas are applicable to rigid frames with non-prismatic bars and of closed type. The method employs joint propagation factor between two adjacent joints as the basic frame constant and the sum of modified stiffness of all the bar-ends at a joint as the auxiliary frame constant. The basic frame constants at the left of right ends of all the bars are computed by the consecutive applications of a single formula in a chain manner. The auxiliary frame constant at any joint where it is needed is computed from the basic frame constants at the two ends of any bar connected to the joint, so that its value may be easily checked by computing it from two or more bars connected to the same joint.Although the principle of this method was developed by Dr. Klouěek and Prof. Meng, the formulas presented in this paper for computing the basic and auxiliary frame constants, besides being believed to be original and by no means the mere amplification of those presented by the two predecessors, are of much improved form and more convenient to apply.By the author's formula, the basic frame constants in closed frames of comparatively simple form may be computed in a straight-forward manner without much difficulties, and this is not the case with any other similar methods except Dr. Klouěek's.The case of sidesway is treated as usual by balancing the shears at the tops of all the columns, but special formulas are deduced for comput- ing those column shears directly from joint rotations and sidesway angle without pre-computing the moments at the two ends of all the columns.In the method of propagating unbalanced moments proposed by Mr. Koo I-Ying and improved by the author, the unbalanced moments at all the bar-ends of each joint are first propagated to the bar-ends of all the other joints to obtain the total unbalanced moments at all the bar-ends, and then are distributed at each joint only once to arrive at the balanced moments at all the bar-ends of that joint. Thus the principle of propagating joint rotations with indirect computation of the bar-end moments is ingeneously applied to propagate unbalanced moments with direct computation of the bar-end moments, and, at the same time, without the inconvenient use of two different moment distribution factors as necessary in all the onecycle methods of moment distribution. The basic frame constant employed in this method is the same as that in the method of propagating joint rotations, so that its nearest approximate value at any bar end may be computed at once by the formula deduced by the author. Evidently, this method combines all the main advantages of the methods proposed by Profs.T. Y. Lin and Meng Chao-Li and Dr. Klouěek, and is undoubtedly the most superior one-cycle method of moment distribution yet proposed as far as the author knows.Typical numerical examples are worked out in details to illustrate the applications of the two methods.

The method of complementary I_0/I diagram for simplifying the computations of non-uniform beam constants is presented in this paper. The so-called "complementary I_0/I diagram" is the remaining I_0/I diagram of the haunched or de-haunched (or tapered) parts at the two ends of a beam after the I_0/I diagram of a non-uniform beam has been subtracted from the I_0/I = 1 diagram of a uniform beam.In the method of I_0/I diagram presented previously by the second author, the various momental areas have to be computed...

The method of complementary I_0/I diagram for simplifying the computations of non-uniform beam constants is presented in this paper. The so-called "complementary I_0/I diagram" is the remaining I_0/I diagram of the haunched or de-haunched (or tapered) parts at the two ends of a beam after the I_0/I diagram of a non-uniform beam has been subtracted from the I_0/I = 1 diagram of a uniform beam.In the method of I_0/I diagram presented previously by the second author, the various momental areas have to be computed for the entire length of a beam; in the method of complementary I_0/I diagram, the various momental areas need be computed for the lengths of the non-uniform sections at the two ends of the beam only. Hence the latter method is somewhat simpler than the former and may be considered as its improvement.The angle-change constants are the fundamental constants of a nonuniform beam, and only the coefficients of the angle-change constants need be computed. As any non-uniform beam may be considered as a uniform beam haunched or de-haunched or tapered at its one or both ends, the various anglechange coefficients φ may be computed separately in three distinct parts, viz., of a uniform beam, and φ~a and φ~b of the haunches at its two ends a and b, and then summed up as shown by the following general equation:φ=φ~a-φ~b (A) The values φ~a and φ~b are positive for haunched beams and negative for dehaunched or tapered beams, and either of them is zero for the end which is neither haunched nor de-haunched. To simplify the computations of the values of φ~a and φ~b, the complementary I_0/I diagram at each end of a beam is substituted by a cubic parabola passing through its two ends and the two intermediate points of the abscissas equal to 0.3 and 0.7 of its length. Then the value of φ~a or φ~b is computed with an error of usually less than 1% by the following formula:φ~a or φ~b = K_(0y0)+K_(3y3)+K_(7y7), (B) wherein y0, y3 and y7 are respectively the ordinates at the abscissa equal to 0, 0.3, and 0.7 of the length of the diagram, and the three corresponding values K_0, K_3 and K_7 are to be found from the previously computed tables.A set of the tables of K-values for calculating the values of φ~a and φ~b of the shape angle-changes and the load angle-changes under various loading conditions may be easily computed, which evidently has the following advantages: (1) As indicated by formulas (A) and (B), the computations of φ~a, φ~b and φ with K-values known are very simple; (2) the approximation of the results obtained is very close; (3) A single set of such K-value of the tables is applicable to non-uniform beams of any shape, any make-up, and any crosssection; and (4) as the K-values are by far easier to compute than any other constants, a comprehensive set of the tables of K-values with close intervals and including many loading conditions may be easily computed.Besides, by means of formulas (A), existing tables of constants such as A. Strassner's for beams haunched at one end only may be utilized to compute the shape and load constants for asymmetrical beams with entirely different haunches at both ends.Finally, five simple but typical examples are worked out first by the approximate method and then checked by some precise method in order to show that the approximation is usually extremely close.

The paper presents an experimental check on method of superposition of the results from "frozen technique" and "direct load" of photoelastic stresses analyses. The superposition of results are in agreement with usual separate analysis, so it seems to be of practical mlerest to further this simpler process.