助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   effectiveness 在 武器工业与军事技术 分类中 的翻译结果: 查询用时:0.013秒
图标索引 在分类学科中查询
所有学科
武器工业与军事技术
中医学
高等教育
航空航天科学与工程
精神病学
企业经济
民商法
教育理论与教育管理
军事
更多类别查询

图标索引 历史查询
 

effectiveness
相关语句
  效能
    Study on Inter-hierarchy Modeling Approach in Weapon-Platform Level System-of-systems Combat Simulation for Operational Effectiveness Evaluation
    面向效能评估的平台级体系对抗仿真跨层次建模方法研究
短句来源
    ON THE EFFECTIVENESS MEASURES OF C~3I
    谈C~3I系统的效能
短句来源
    The Evaluation Model on the Effectiveness of the Torpedo Weapon system
    鱼雷武器系统效能评价数学模型
短句来源
    Analysis of Training Effectiveness for Military Trainers
    军用教练机训练效能分析
短句来源
    RESEARCH ON EVALUATION OF COMBAT EFFECTIVENESS FOR WEAPON SYSTEMS
    武器系统作战效能评定的研究
短句来源
更多       
  “effectiveness”译为未确定词的双语例句
    Quantitative Assessment Method for Battle Effectiveness of Surface to Air Missile Troops
    地空导弹部队战斗力定量评估方法
短句来源
    The Complexity of Modern War: Study on Synergistic Effectiveness in Joint Operations
    现代战争复杂性—联合作战的“联合增效”作用研究
短句来源
    Research on the quantitative model for the nuclear deterrence effectiveness
    核威慑能力定量化模型研究
短句来源
    Research on the deception jamming effectiveness measurement against SAR based on textural property matching method
    基于区域纹理匹配的SAR欺骗性干扰评估方法研究
短句来源
    Then the effectiveness of noise jamming on SAR is studied, including the synthetic SNR and the relation of the image error probability and the radiometric resolution with the synthetic SNR under the condition of noise jamming.
    本文首先介绍了合成孔径雷达成像原理及其地面场景特征,然后研究了噪声干扰对合成孔径雷达的影响,包括噪声干扰的基本理论研究,推导合成孔径雷达干扰方程,从而得到噪声干扰条件下合成孔径雷达的综合信噪比,并分析了合成孔径雷达图像错误概率、辐射分辨力同信噪比的关系。
短句来源
更多       
查询“effectiveness”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  effectiveness
The effectiveness of accounting correctly for the geometry of the sphere in the wavelet analysis of full-sky CMB data is demonstrated by the highly significant detections of physical processes and effects that are made in these reviewed works.
      
Numerical computation shows the effectiveness of splitting iteration method.
      
Numerical results also declare effectiveness of the method.
      
Finally, An example is illustrated to show the applicability and effectiveness of our method.
      
An application to a simulated batch MMA polymerization process demonstrates the effectiveness of the proposed method.
      
更多          


The problems of the exterior ballistic design, especially, the caliber selection are solved in this paper by applying approximation methods other than usual tabular solutions。 Here various factors affecting caliber selection are investigated, the principles in selecting "d" and "Cq" at different firing ranges and the available boundaries thereof suggested, the iterative formulas and differential formulas for the determination of calibers established, and finally the comprehensive criteria in the evaluation of...

The problems of the exterior ballistic design, especially, the caliber selection are solved in this paper by applying approximation methods other than usual tabular solutions。 Here various factors affecting caliber selection are investigated, the principles in selecting "d" and "Cq" at different firing ranges and the available boundaries thereof suggested, the iterative formulas and differential formulas for the determination of calibers established, and finally the comprehensive criteria in the evaluation of various design concepts defined。In addition, the caliber formula of minimum recoil is presented according to specific energy of impact.In solving the problems mentioned above, this paper, apart from usual methods in the past, considers simultaneously all the aspects: both interior and exterior ballistics, performance requirements and effectiveness of the weapon systems, and it still possesses the advantages of clearness in physical relations and easiness in calculation.

与过去沿用的表解法不同,本文采用近似解析法解决步机枪的外弹道设计问题,尤其是口径选择问题。文中研究了影响口径的诸因素,给出了各种不同射程上d和C_q的选取原则和选择范围,建立了确定口径的迭代公式和微分公式,定义了选择方案的综合判据。最后,还给出了按落点比能进行设计时,后座最小的口径方案。在解决上述问题时,与传统的方法不同,本文综合考虑了内弹道和外弹道、性能指标和“效率”指标两个方面,并具有物理关系清楚,计算简便等优点。

In the nuclear stratigic anti-attack of the war, We must to give the probability distribution of the demaged numbers of the single target in the target system, in order to improve the killing effectiveness. In the past, one considered the all different conditions which may occur in the anti-attack when nuclear weapons is thrusted. Then, using the method of combination to give the probability distribution of the numbers for the demaged targets. This method is trubsome, especially when the numbers of the...

In the nuclear stratigic anti-attack of the war, We must to give the probability distribution of the demaged numbers of the single target in the target system, in order to improve the killing effectiveness. In the past, one considered the all different conditions which may occur in the anti-attack when nuclear weapons is thrusted. Then, using the method of combination to give the probability distribution of the numbers for the demaged targets. This method is trubsome, especially when the numbers of the target is large. For this reason, We introduce the idea of target state, then apply ChapmanKolmogorof eguation to calculate the transition probability of the state for the target system. We obtain the recursive algorithm, and the calculation is much simpler. In the end of this paper we consider the mathematical models of the target allocation problems. Usually, we may discuss these problems by means of programming method.

在战略核反击中,为了提高对目标群的毁伤效果,要求给出多发射击之下破坏目标群中单个目标数的概率分布。过去,人们对于所有可能出现的各种不同情况,应用组合方法,给出毁伤目标数的概率分布。这就是所谓“穷举法”。这种方法在目标数以及发射数较多时就显得烦琐了。为此,本文运用目标状态的概念,应用Chapman-方程,给出在任意次打击之下目标群所处状态的概率。在计算过程中运用了递推运算方法。因此,比较简便且有规则。在此基础上可以方便地给出毁伤目标群中单个目标数的概率分布。在上述概率分布计算过程中,对每个目标打击时所需发射的弹的数量是给定了的。从最大限度地发挥导弹核武器的射击效果出发,存在一种最优打击方案(这就是所谓火力规划问题)。一般地说,它包含了两方面的问题:爆心投影点的选取以及对每个爆心投影点所发射导弹数的配置。第一个问题我们过去已进行过一些讨论。本文将对导弹核武器的最优配置问题进行讨论。着重点是形成火力配置的规划论模型。

The most important performance of the rocket projectiles is their dispersion. During the launching of the rocket projectiles at area targets, the reasonable value of the dispersion must be required so as to improve the fire effectiveness. In this paper, the problem of the relationship between the mathematical expectation of the number of the target damaged M [ω] and the dispersion of rocket projectiles is discussed. The expression for M [ω] is presented on the assumption that each of the random variables...

The most important performance of the rocket projectiles is their dispersion. During the launching of the rocket projectiles at area targets, the reasonable value of the dispersion must be required so as to improve the fire effectiveness. In this paper, the problem of the relationship between the mathematical expectation of the number of the target damaged M [ω] and the dispersion of rocket projectiles is discussed. The expression for M [ω] is presented on the assumption that each of the random variables is subordinated to the normal distribution and does not depend on each other, and the targets are under the typical condition. This expression includes the accuracy and the dispersion of the rocket projectiles, consumption of the ammunition, the number of hits and the effective area of the target. With the values of other parameters fixed, a set of curves M [ω] related to the ratio of the probable error of dispersion to the probable error of the center of bunching B_x/E_x or B_z/E_z can be made in accordance with the results of calculations. If the reasonable ratios of B_x/E_x or B_z/E_z and the proper relative values of the probable error of the center of bunching (?)_x or (?)_z are selected and the ratio between the probable range error and the probable deviation in the lateral direction B_x/B_z is suitable to the ratio between the length and width of the rectangular target, the value M [ω] will be obtained for optimization of design of the rocket projectiles.

火箭弹最重要的性能是密集度。在向大面积目标射击时,为了提高射击效能,对密集度应有合理的要求。本文讨论被毁伤目标数的数学期望M[ω]和火箭弹密集度的关系。在随机变量服从正态分布并相互无关及目标处于典型条件的假定基础上得出M[ω]的表达式。式中含有准确度、密集度、弹药消耗量、命中弹数及有效幅员。在其它参量取一定值时,按计算结果作出和密集度中间误差与准确度中间误差比值B_x/E_x、B_z/E_z有关的M[ω]曲线组。若选择合理的B_x/E_x、B_z/E_z比值和合适的准确度中间误差相对值(?)_x、(?)_z,以及距离中间误差与方向中间误差之比值B_x/B_z适合于矩形目标的长宽比,可以求得火箭弹优化设计的M[ω]值。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关effectiveness的内容
在知识搜索中查有关effectiveness的内容
在数字搜索中查有关effectiveness的内容
在概念知识元中查有关effectiveness的内容
在学术趋势中查有关effectiveness的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社