CFG-pile composite foundation is one of new foundation treatment technologies developed in recent decade This paper discusses its conventional technology including makeup material,constnuction method and pillow setting In addition,its application conditions and design method are also discussed

PP-R polypropylene water supply pipe that has been spread and applied gradually in water supply industry in recent years is in detail discussed from many aspects such as its characteristic, application range, production quality demand, construction installing, construction check and so on.

Concrete cutting with diamond tool and conventional machining are compared in this paper. Four various concrete cutting methods and their application are introduced.

Based on the application in ENCH mansion,the paper analyses the features of double-skinned curtain wall and discusses some aspects in practical application.

According to relative code in current,application of intelligent leaking current switch in LV power distribution system are discussed,including component,function feature,and suggestion on setting range,position,grading protection,residual current and action time.

The reasonable result in actual application is got by using fuzzy comprehensive assessment, which accords with the rock mass classification's demand and reflects the rock mass' actual condition.

This paper introduces the characteristics of steel fiber reinforced concrete,analyzes several basic mechanical properties of steel fiber-steel wire mesh concrete by lots of experiments,introduces its application in protective engineering,and shows by practices that this new composite material has well application effect and is worthy to be popularized.

According to the difficulties encountered in construction of 32 m 9753-I type post-tensioned prestressed beam in railway bridge works with C55 greatly mobility concrete measures utilizing 42.5 Portland cement,high-quality aggregate and high efficiency water reducing agent are introduced as well as quality control and engineering application situations. Author point out that double-admixing concrete is practicable to increase economic benefits for project.

In light of current application condition of solar energy in building in our country,the author proposes the design method of combining solar energy collector with building and the suggestions for it,and illustrates the integration application of solar energy collector in building,in order to quicken the development of applied technique combining solar energy with building.

This article will emphasize to introduce the application of the continuous basalt fiber in architecture and capital constructions: 1. the applications of continuous basalt fiber in bridge, decking.

As an application we produce complete hyperbolic 5-manifolds that are nontrivial plane bundles over closed hyperbolic 3-manifolds and conformally flat 4-manifolds that are nontrivial circle bundles over closed hyperbolic 3-manifolds.

As an application of the results we prove a generalization of Chevalley's restriction theorem for the classical Lie algebras.

The proof is an application of a recent result by W.

The application arises because of a very strong homological property enjoyed by certain cell filtrations forq-permutation modules.

We give as an application a family of singular Schubert varieties.

It is pointed out in this paper that the following apparent discrepancies exist in Coulomb's Theory: (1) In any problem in mechanics, a force to be definite must have all the three factors involved under consideration. In Coulomb's Theory, however, the point of application of the soil reaction on the plane of sliding is somehow neglected, thus enabling the arbitrary designation of the obliquity of the earth pressure on the wall to be equal to the friction angle between the wall surface and soil. As a matter...

It is pointed out in this paper that the following apparent discrepancies exist in Coulomb's Theory: (1) In any problem in mechanics, a force to be definite must have all the three factors involved under consideration. In Coulomb's Theory, however, the point of application of the soil reaction on the plane of sliding is somehow neglected, thus enabling the arbitrary designation of the obliquity of the earth pressure on the wall to be equal to the friction angle between the wall surface and soil. As a matter of principle, the point of application should never be slighted while the obliquity of the earth pressure could only have a value that is compatible with the conditions for equilibrium. (2) If the point of application of the soil reaction is taken into account in the problem, the sliding wedge would only tend to slide either on the plane of sliding or on the surface of wall but not on both at the same time, thus frustrating the very conceptidn of sliding wedge upon which Coulomb's Theory is founded. (3) The above discrepancies arise from the fact that the shape of the surface of sliding should be curvilinear in order to make the wedge tend to slide as desired, while Coulomb, however, adopted a plane surface instead. (4) Coulomb, in finding the plane of sliding, made use of the maximum earth pressure on the wall (for active pressure), which refers to the different magnitudes of pressure corresponding to different assumed inclinations of the plane of sliding. But from the relation between the yield of wall and amount of pressure, this maximum value is really the minimum pressure on the wall, which it is the purpose of the theory to find. In engineering books, however, this terminology of maximum pressure has caused considerable confusion, with the result that what is really the minimum pressure is carelessly taken as the maximum design load for the wall. How can a minimum load be used in a design?This paper also attempts to clarify some contended points in Rankine's Theory: (1) It is claimed by Prof. Terzaghi that Rankine's Theory is only a fallacy because of the yield of wall and that of the soil mass on its bed. This charge is unjust as it can be compared with Coulomb's Theory in the same respect. (2) Some books declare that Rankine's Theory is good only for walls with vertical back, but it is proved in this paper that this is not so. (3) It is also generally believed that Rankine's Theory is applicable only to wall surfaces with no friction. This is likewise taken by this paper as unfounded and illustration is given whereby, in this regard, Rankine's Theory is even better than Coulomb's, because it contains no contradiction, as does Coulomb's.

This paper is a supplement to the author's previous paper "The Constants and Analysis of Rigid Frames", published in the first issue of the Journal. Its purpose is to amplify as well as to improve the method of propagating joint rotations developed, separately and independently, by Dr. Klouěek and Prof. Meng, so that the formulas are applicable to rigid frames with non-prismatic bars and of closed type. The method employs joint propagation factor between two adjacent joints as the basic frame constant and the...

This paper is a supplement to the author's previous paper "The Constants and Analysis of Rigid Frames", published in the first issue of the Journal. Its purpose is to amplify as well as to improve the method of propagating joint rotations developed, separately and independently, by Dr. Klouěek and Prof. Meng, so that the formulas are applicable to rigid frames with non-prismatic bars and of closed type. The method employs joint propagation factor between two adjacent joints as the basic frame constant and the sum of modified stiffness of all the bar-ends at a joint as the auxiliary frame constant. The basic frame constants at the left of right ends of all the bars are computed by the consecutive applications of a single formula in a chain manner. The auxiliary frame constant at any joint where it is needed is computed from the basic frame constants at the two ends of any bar connected to the joint, so that its value may be easily checked by computing it from two or more bars connected to the same joint.Although the principle of this method was developed by Dr. Klouěek and Prof. Meng, the formulas presented in this paper for computing the basic and auxiliary frame constants, besides being believed to be original and by no means the mere amplification of those presented by the two predecessors, are of much improved form and more convenient to apply.By the author's formula, the basic frame constants in closed frames of comparatively simple form may be computed in a straight-forward manner without much difficulties, and this is not the case with any other similar methods except Dr. Klouěek's.The case of sidesway is treated as usual by balancing the shears at the tops of all the columns, but special formulas are deduced for comput- ing those column shears directly from joint rotations and sidesway angle without pre-computing the moments at the two ends of all the columns.In the method of propagating unbalanced moments proposed by Mr. Koo I-Ying and improved by the author, the unbalanced moments at all the bar-ends of each joint are first propagated to the bar-ends of all the other joints to obtain the total unbalanced moments at all the bar-ends, and then are distributed at each joint only once to arrive at the balanced moments at all the bar-ends of that joint. Thus the principle of propagating joint rotations with indirect computation of the bar-end moments is ingeneously applied to propagate unbalanced moments with direct computation of the bar-end moments, and, at the same time, without the inconvenient use of two different moment distribution factors as necessary in all the onecycle methods of moment distribution. The basic frame constant employed in this method is the same as that in the method of propagating joint rotations, so that its nearest approximate value at any bar end may be computed at once by the formula deduced by the author. Evidently, this method combines all the main advantages of the methods proposed by Profs.T. Y. Lin and Meng Chao-Li and Dr. Klouěek, and is undoubtedly the most superior one-cycle method of moment distribution yet proposed as far as the author knows.Typical numerical examples are worked out in details to illustrate the applications of the two methods.

In this paper a method for computing the influence lines in open rigid frames is presented. This method is based on the Müller-Breslau's principle that every deflection diagram is an influence line. If any section of a given rigid frame, at which the influence llne of any stress function——such as reaction, shear, bending moment and torsion——is desired, is allowed to produce freely a corresponding unit deformation, the deflection diagram of this frame will be the same as the influence of that stress function.The...

In this paper a method for computing the influence lines in open rigid frames is presented. This method is based on the Müller-Breslau's principle that every deflection diagram is an influence line. If any section of a given rigid frame, at which the influence llne of any stress function——such as reaction, shear, bending moment and torsion——is desired, is allowed to produce freely a corresponding unit deformation, the deflection diagram of this frame will be the same as the influence of that stress function.The fundamental idea of this method is that the angle-changes at ends of bars due to unit deformation can be determined by propagating joint rotations and that the resulting deflection diagram which is the same as the influence line of the corresponding stress function may be determined by method of conjugate beam.Typical numerical examples are worked out to show the application of this method.