助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   rbf 在 电信技术 分类中 的翻译结果: 查询用时:0.011秒
图标索引 在分类学科中查询
所有学科
电信技术
自动化技术
数学
宏观经济管理与可持续发展
金融
水利水电工程
电力工业
建筑科学与工程
更多类别查询

图标索引 历史查询
 

rbf
相关语句
  径向基
    Model Following Nonlinear Self Repairing Control Based on RBF Neural Networks
    基于径向基函数神经网络的模型跟随自修复控制
短句来源
    Nonlinear ANC Based on RBF Neural Networks
    基于径向基神经网络的非线性自适应除噪
短句来源
    The Application of RBF Neural Network in Material Recognition of Ultra-Wideband Ground-Penetrating Radar
    径向基函数神经网络在超宽带探地雷达目标材质识别中的应用
短句来源
    The Research of Automatic Modulation Recognition Based on RBF Neural Network in Software Radio
    基于径向基函数(RBF)神经网络的软件无线电信号自动调制识别研究
短句来源
    Based on radial basis function neural network (RBFNN)' good performance on function approximation, applied RBF to the TVAR parametric model.
    基于径向基神经网络(RBFNN)的良好逼近性能,使用径向基(RBF)作为模型的基函数; 并证明高斯径向基函数对时变参数的逼近性能优越于传统的多项式函数基。
短句来源
更多       
  “rbf”译为未确定词的双语例句
    Automatic recognition of communication signal using RBF networks
    RBF网络在通信信号自动识别中的应用
短句来源
    In order to recognize digitally modulated signals with order higher than 4,such as QAM,and to improve the robustness of the recognition method on the AWGN,based on the recognition parameters of the decision-theoretic approach, certain cumulants parameters are added,and the radial basis function(RBF) neural network with those combined parameters is adopted to improve the recognition ability on the digitally modulated signals.
    为识别QAM等阶数高于4的数字调制信号及提高调制识别算法对高斯白噪声(AWGN)的鲁棒性,在决策论识别参数的基础上,增加了高阶统计量识别参数,并利用混合参数的经向基函数(RBF)神经网络实现数字信号调制样式自动识别,提高了对数字调制信号的识别能力.
短句来源
    A RBF Gamma HMM Combined Model for Continuous Speech Recognition
    用于连续语音识别的RBF-Gamma-HMM组合模型
短句来源
    Initial Alignment of Inertial Navigation System Based on the RBF Neural Network
    基于RBF网络的惯导系统初始对准
短句来源
    A Novel HMM and RBF Hybrid Method for Speech Recognition
    基于HMM与RBF的混合语音识别新方法
短句来源
更多       
查询“rbf”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  rbf
At the same time, linear regression, nonlinear regression and radial basis function (RBF) neural network models are set up to evaluate weld quality between the selected parameters and tensile-shear strength.
      
For the RBF neural network model, which is more effective for monitoring weld quality than the others, the average error validated is 2.88% and the maximal error validated is under 10%.
      
The provision of residents of the European North of Russia with vitamin B2 (riboflavin (RBF)) and the activity of the erythrocytic RBF-dependent enzyme glutathione reductase (EC 1.6.4.2) were studied.
      
in residents of the European North of juvenile and senile age The provision with RBF showed a tendency toward a decrease as compared to other age groups of the population.
      
The parameters of provision with RBF were correlated significantly with the level of physical activity, alcohol status, and season of the year.
      
更多          


Automatic classification of communication signals can be considered as a pattern recognitionproblem. It can be solved by davital signal processing and pattern recognition. This Paper presents a method to solve this problem by using RBF networks. A structure of neural networks isdesigned by means of the RBF network for recognizing communication signals. Simulation experboantat results show that, owing to using feature Valors to lower dimensions, the new networkscan not only accomplish the signal recognition...

Automatic classification of communication signals can be considered as a pattern recognitionproblem. It can be solved by davital signal processing and pattern recognition. This Paper presents a method to solve this problem by using RBF networks. A structure of neural networks isdesigned by means of the RBF network for recognizing communication signals. Simulation experboantat results show that, owing to using feature Valors to lower dimensions, the new networkscan not only accomplish the signal recognition task, but also give a better result than the existingmethods in terms of training speed, memory robustness and realization by using hardware.

通信信号自动分类是一模式识别问题,通常用数字信号处理和模式分类的方法来求解.文中提出了将RBF(RadialBasisFunction)网络方法应用于通信信号自动识别的具体方法.构造了运用RBF网络的信号分类的神经网络结构.通过模拟实验表明,由于采用了将信号特征矢量降维的方法,该网络不仅能够很好地完成信号分类,而且具有比传统方法训练速度快、占用存贮空间少、容错性强和易子硬件实现等特点.

A new adaptive sliding mode controller using neural networks is proposed for the robust tracking controller design of an n link manipulator with unknown dynamics nonlinearities. The controller employs Gaussian radial basis function(RBF) neural networks to adaptively compensate for the plant nonlinearities. The system stability and tracking error convergence are proved using stability theory that yields a stable parameter learning law. Finally, the effectiveness of the proposed control approach is illustrated...

A new adaptive sliding mode controller using neural networks is proposed for the robust tracking controller design of an n link manipulator with unknown dynamics nonlinearities. The controller employs Gaussian radial basis function(RBF) neural networks to adaptively compensate for the plant nonlinearities. The system stability and tracking error convergence are proved using stability theory that yields a stable parameter learning law. Finally, the effectiveness of the proposed control approach is illustrated through simulation studies.

针对多关节机械手的鲁棒跟随控制器设计问题,提出了一种新的机械手神经网络自适应滑动模控制器设计方法,机械手的动力学非线性假设是完全未知的。在提出的控制结构中,高斯径向基函数神经网络用于在线补偿机械手的动力学非线性,参数学习律由稳定性理论得到。给出了系统稳定性和参数收敛性的证明。最后提出方法的可行性通过仿真得到验证

This paper studies target recognition for high resolution radar by range profile. Three methods of recognition are tested by using an experiment ISAR data,which are radial basis function (RBF) neural network method in frequency domain and two correlation filters (one in space domain and another in frequency domain).

本文研究基于一维距离像的高分辨雷达目标识别方法。文中讨论了三种识别方法(频率域RBF神经网络方法、频率域相关滤波器和距离域相关滤波器),并用我国实验ISAR录取的数据比较了这三种方法在不同信噪比下的识别性能。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关rbf的内容
在知识搜索中查有关rbf的内容
在数字搜索中查有关rbf的内容
在概念知识元中查有关rbf的内容
在学术趋势中查有关rbf的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社