助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   rbf 在 自动化技术 分类中 的翻译结果: 查询用时:0.01秒
图标索引 在分类学科中查询
所有学科
自动化技术
数学
宏观经济管理与可持续发展
金融
水利水电工程
电力工业
电信技术
建筑科学与工程
更多类别查询

图标索引 历史查询
 

rbf
相关语句
  径向基
    An application of RBF artificial neural network to the lake eutrophication evaluation
    径向基函数网络在湖泊富营养化程度评价中的应用
短句来源
    LSSVM with the radial basis function(RBF) kernel was used in the method,and the nonlinear offline static inverse model of the controlled plant was built.
    该方法用具有径向基核函数(RBF)的LS-SVM,离线建立被控对象的静态非线性逆模型.
短句来源
    In this paper, the modeling and application of RBF Neural network about welding distortions in ship-building industry are proposed.
    本文研究了船舶工业过程中关于焊接变形的径向基函数(RBF)神经网络建模及应用。
    Model Following Nonlinear Self Repairing Control Based on RBF Neural Networks
    基于径向基函数神经网络的模型跟随自修复控制
短句来源
    Compensation for Linear Birefringence Effect ofOptical Current Sensor Using RBF Network
    用径向基函数网络实现光学电流传感器线性双折射效应的补偿
短句来源
更多       
  “rbf”译为未确定词的双语例句
    The Improved RBF Neural Network and Its Application
    改进的RBF神经元网络及其应用
短句来源
    Modelling of Graphitizing Furnace by Use of RBF Neural Network
    用RBF神经网络建立石墨化炉过程模型
短句来源
    The experiment and simulation show that the model of RBF neural network based on PCA has better effect than the common RBF neural network model,the construction of RBF network is simplified,and the precision is increased.
    仿真实验表明,基于PCA的RBF神经网络模型在拟合预测中与一般的RBF神经网络模型相比有较好效果,简化了网络结构,改善了预测精度.
短句来源
    The learning algorithm of membership function based on the RBF Neural Network is discussed and an example is given to demonstrate the validity of this algorithm.
    文中探讨了一种用于提取模糊规则的RBF神经网络结构,提出了基于此网路结构的模糊隶属度函数学习算法,最后给出了用于验证该算法有效性的仿真实例.
短句来源
    This article establishes the quality model of Mechanic Processing Error by using the RBF network,and has obtained the better simulation effect.
    采用RBF神经网络建立加工误差的质量模型,并通过实验仿真,取得了较好的仿真效果.
短句来源
更多       
查询“rbf”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  rbf
At the same time, linear regression, nonlinear regression and radial basis function (RBF) neural network models are set up to evaluate weld quality between the selected parameters and tensile-shear strength.
      
For the RBF neural network model, which is more effective for monitoring weld quality than the others, the average error validated is 2.88% and the maximal error validated is under 10%.
      
The provision of residents of the European North of Russia with vitamin B2 (riboflavin (RBF)) and the activity of the erythrocytic RBF-dependent enzyme glutathione reductase (EC 1.6.4.2) were studied.
      
in residents of the European North of juvenile and senile age The provision with RBF showed a tendency toward a decrease as compared to other age groups of the population.
      
The parameters of provision with RBF were correlated significantly with the level of physical activity, alcohol status, and season of the year.
      
更多          


A new trajectory tracking control scheme Of robot manipulators is developed in this paper.The proposed scheme consists Of a well known computed torque controller,which is based on the known nominal robot dynamics model,and a compensating controller,which is realized incorporating an radial basis functinn(RBF)neural netWork estimator and a discontinuous control signal.The compensating controller works like an add-on device.The Proposed control scheme is effective to the robot systems with unknown Parameters...

A new trajectory tracking control scheme Of robot manipulators is developed in this paper.The proposed scheme consists Of a well known computed torque controller,which is based on the known nominal robot dynamics model,and a compensating controller,which is realized incorporating an radial basis functinn(RBF)neural netWork estimator and a discontinuous control signal.The compensating controller works like an add-on device.The Proposed control scheme is effective to the robot systems with unknown Parameters and disturbance such as Coulomb friction. The simulation results have demonstrated the feasibility of the proposed scheme.

本文研究具有不确定性的机器人的轨迹跟踪控制问题.提出了一种由计算力矩控制器和神经网络补偿控制器构成的控制方案.探讨了一种用神经网络估计机器人系统不确定性的途径.给出了神经补偿控制器的设计方法,并证明了闭环系统的收敛性.仿真结构表明所提方案具有很好的鲁棒性和抗干扰能力.

In this paper, a one-step ahead predictive control algorithm based on Radial Base Function (RBF)neural networks is proposed, which needs only one neural network. The algorithm is simple, and the control value can be acquired by only a few iterations. Thus it has good real-time property. Through the simulation for a discrete nonlinear system, it is obvious that the algorithm posseses good control performance such as robustness.

提出一种基于径向基函数(RBF)神经网络的一步超前预测控制算法。该方法只用一个网络,控制量的获取只求几步迭代,算法简单并有较好的实时性。通过对离散非线性系统的仿真证明了算法的有效性.

A neural network-based stable adaptive control approach is developed in this paper for a class of sampled-data nonlinear systems, for which the nonlinear system dynamics are either unknown or difficult to obtain. The controller employs Radial Basis Function (RBF) neural networks to adaptively compensate for the plant nonlinearities, and the neural network parameters are adapted using stability theory. A complete stability and tracking error convergence proof is given, and the effectiveness of the proposed...

A neural network-based stable adaptive control approach is developed in this paper for a class of sampled-data nonlinear systems, for which the nonlinear system dynamics are either unknown or difficult to obtain. The controller employs Radial Basis Function (RBF) neural networks to adaptively compensate for the plant nonlinearities, and the neural network parameters are adapted using stability theory. A complete stability and tracking error convergence proof is given, and the effectiveness of the proposed control approach is illustrated through simulation studies of a two-link manipulator.

针对一类动力学未知或难以建模的采样非线性系统,提出了一种基于神经网络的跟随控制器稳定自适应控制方法.控制器采用径向基函数神经网络近似对象的动力学非线性,神经网络参数的自适应规律由稳定理论得到.文中给出了系统稳定性和跟随误差收敛性的证明,并通过仿真实例揭示了所提方法的性能.

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关rbf的内容
在知识搜索中查有关rbf的内容
在数字搜索中查有关rbf的内容
在概念知识元中查有关rbf的内容
在学术趋势中查有关rbf的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社