助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   ellipse 的翻译结果: 查询用时:0.013秒
图标索引 在分类学科中查询
所有学科
数学
计算机软件及计算机应用
金属学及金属工艺
机械工业
工业通用技术及设备
自动化技术
建筑科学与工程
物理学
力学
更多类别查询

图标索引 历史查询
 

ellipse
相关语句
  椭圆
     Investigations on High Ellipse Barrel By many times Deformation
     高椭圆筒形件多次成形试验研究
短句来源
     "Ellipse Theorems" for Systems of Entire Functions
     整函数系统的“椭圆定理”
短句来源
     A discussion on the general regularity in thevariation of mean error ellipse
     关于误差椭圆变化规律的探讨
短句来源
     Application of Ellipse Integral in Winding Technique for GRP
     椭圆积分在玻璃钢缠绕技术中的应用
短句来源
     Design and Analysis of a Seven-Order Ellipse Low-Pass Switched-Capacitor Filter
     开关电容七阶低通椭圆滤波器设计与分析
短句来源
更多       
  椭圆形
     In the round one,it is 7.0±2.0 mm in diameter, and in the ellipse one,it is 9.5±1.8 mm and 7.2±1.4 mm in diameters.
     椭圆形左右径为9.5±1.8mm,前后径为7.2±1.4mm。
短句来源
     Ascospore 2~8, ellipse, ovum or approximately globe, colorless, 6.0~20.0×5.0~16.0μm in diameter.
     内有子囊孢子2~8个,呈椭圆形、扁圆形,无色,大小为6.0-20.0μm×5.0~16.0μm。
短句来源
     The fertilized eggs were obtained by artificial insemination. The oocytes are round or ellipse and range from 120 μm×142 μm to 125 μm×148 μm in size.
     结果表明:可口革囊星虫的卵为圆形或椭圆形,卵的大小为120μm×142μm-125μm×148μm。
短句来源
     Fb 1 is ellipse and its cells array in pairs and the size is 0.7 ~1 μm.
     Fb1细胞为椭圆形 ,细胞成对排列 ,有单生、双生鞭毛和芽孢 ,细胞大小为 0 .7~ 1 .0 μm ;
短句来源
     3.The shape and the margin of lesions were:circular or ellipse niduses with smooth surface and clear tumor-lung interface in 15 ( 71.4% ) ,irregular-shaped niduses in 6 ( 28.6% ) , with lobulation sign in 3 , spiculae in 2 , pleural indentation,bronchovascular bundles and halo in 1 respectively ;
     ③形态、边缘 :15例 (71.4% )呈圆形或椭圆形且表面光滑 ,界面清楚 ,6例 (2 8.6% )呈不规则形并分别或同时见分叶征 (3例 )、毛刺征 (2例 )、胸膜凹陷征、血管集束征、晕环征 (各 1例 )。
短句来源
更多       
  “ellipse”译为未确定词的双语例句
     If λ=E 1∶E 2=1.0∶1.25,θ=80°~90° or λ=1.0~1.1,θ=75°~90°, the probability of error parallelogram is minimum, and the probability of error circle is 99.4%~100% of error ellipse.
     (2 )当两条船位线的精度比λ =E1∶E2 =1.0∶1.2 5 ,交角θ =80°~ 90°及λ =1.0~ 1.1,θ =75°~ 90°时 ,误差四边形覆盖船位的概率为最小 ,而误差圆覆盖船位的概率是误差椭圆的 99.4 %~ 10 0 %。
短句来源
     If λ=1 0~1 1,θ=75°~90° and λ=1 0~1 25,θ=80°~90°,the area of error parallelogram is maximum,and the area of error ellipse is 98 9%~100% of error circle.
     (2)当两条船位线的精度比λ=E1E2=1.0~1.25,交角θ=80°~90°及λ=1.0~1.1,θ=75°~90°时,误差四边形的面积为最大,而误差椭圆的面积为圆的98.9%~100%。
短句来源
     It is demonstrated that the bar steel rolled by this method can match the cold drawn steel in the accuracy of the ellipse degress of cross-section and moreover the steel is more suitable for grinding and levelling in mechanical properties, which are σ_b=956~960MPa, HB=231~234, δ=12~17%.
     通过冷轧规圆的圆钢,断面椭圆度可达到冷拔精度,且机械性能σ_b=950~960MPa、HB=231~234、δ=12~17%,适于研磨及矫直处理。
短句来源
     A simple method in the approximation of ellipsoid by bicubic polynomials is given in this paper, the error is approximately 273×10-6 for ellipse and 545×10-6 for ellipsoid.
     给出了用双三次多项式逼近椭球的一种简明方法. 逼近椭圆的误差为273×10-6,逼近椭球的误差为545×10-6.
短句来源
     At 5-10 min of fertilization, the eggs begin to absorb water and become ellipse.
     受精5~10min后吸水膨胀成椭圆形。
短句来源
更多       
查询“ellipse”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  ellipse
Whereas the P and Q for a rotor broken bar motor are represented by an ellipse because they comprise an additional frequency component 2sfs (s is the slip and fs is the supply frequency).
      
We use the major radius of the ellipse as the fault indicator and the distance between the point of no-load condition and the center of the ellipse on the PQ plane as its normalization value.
      
Considering that the traditional process method is an approximate one, a new method is presented to simultaneously obtain the amplitude and phase of output signal of sensor by simultaneity A/D and ellipse fit arithmetic.
      
Finally, taking ellipse elastic clamped plates as an example, the effects on fundamental frequency coefficient caused by eccentric ratio e and area size are analyzed.
      
An approximation of the cavity by an ellipse is used to find the approximate analytical dependence of the Weber number on the deformation, and a comparison is made with numerical calculations [3, 4].
      
更多          


A second-approximation solution for the pressure distribution between two elastic bodies in contact is presented. In addition to the terms used by Hertz as the description of a general surface of contact, the present theory will contain the next higher-order terms of its Taylor's series expansion, such that the coefficients of the Hertz second power terms as well as the dominant fourth-power term is satisfied. Hence, the second order effect is a correction to Hertz theory which increases both with the increase...

A second-approximation solution for the pressure distribution between two elastic bodies in contact is presented. In addition to the terms used by Hertz as the description of a general surface of contact, the present theory will contain the next higher-order terms of its Taylor's series expansion, such that the coefficients of the Hertz second power terms as well as the dominant fourth-power term is satisfied. Hence, the second order effect is a correction to Hertz theory which increases both with the increase of normal load and with the increase of eccentricity of the contact. ellipse. method of change of variables is adopted in the process of integration. The solution, thus obtained, agrees exactly with that obtained by Cattaneo when reduced to his special case of two solids of revolution in contact.To illustrate the usefulness of the present theory, the problem of contact between a ball and the outer race of a ball bearing is studied. Curves are plotted to show that the relative magnitude of the second order effect varies with the shape ratio of the contact ellipse at various normal loads.

本文中提供了關於彈性接觸體間壓力分佈的一個二次近似解。解中的高次量效應是對赫芝理論的一個改進;它的影響隨着外力或接觸椭圓面偏心率的增加而顯得更重要。因此這個解在某些實際應用上如滚珠軸承中滾珠与珠槽間的接觸問題,是较需要的。同時當接觸體均為迴轉體這一特殊情况下、本文解答就同凱泰尼奥之解,完全一致。

Consider the real differential system dx/dt=P_3(x,y), dy/dt=Q_3(x,y)where P_3(x,y) and Q_3(x,y) are polynomials of the 3-rd degree. Suppose that the system has at lease one elementary critical point of index+1, and it can be written in the form dx/dt=-y+xF_1(x,y)+gy~2+hy~2 (1) dy/dt-x+yF_2(x,y)+rx~2+sx~3 where F_1(x,y)and F_2(x,y) are polynomials of the 2-nd degree. If g=h=r=s=0 and F_1(x,y)≡F_2(x,y), then systen(1)takes the form dx/dt=-y+xF(x,y),dy/dt=x+yF(x,y) (2)for which we have the following: Theorem. If...

Consider the real differential system dx/dt=P_3(x,y), dy/dt=Q_3(x,y)where P_3(x,y) and Q_3(x,y) are polynomials of the 3-rd degree. Suppose that the system has at lease one elementary critical point of index+1, and it can be written in the form dx/dt=-y+xF_1(x,y)+gy~2+hy~2 (1) dy/dt-x+yF_2(x,y)+rx~2+sx~3 where F_1(x,y)and F_2(x,y) are polynomials of the 2-nd degree. If g=h=r=s=0 and F_1(x,y)≡F_2(x,y), then systen(1)takes the form dx/dt=-y+xF(x,y),dy/dt=x+yF(x,y) (2)for which we have the following: Theorem. If F(x,y)=0 is a real ellipse, which contains the origin in tis interior, then the system(2)has a unique limit-cycle, which is stable when F(0,0)>0, and unstable when F(0,0)<0; if F(x,y)=0 is an imaginary ellipse or a point, then the system (2) has no periodic solution. This Is a generalization of two theorems in [2], Part Ⅳ, chapter 3, §1. If g=h=r=s=0 and F_2(x,y)≡0, then system(1)takes the form dx/dt=-y+xF(x,y),dx/dt=x(3) for which we have the foolowing: Theorem. If F(x,y)=0 is a real ellipse which contains the origin in its interior, then the system (3) has a stable limit-cycle when F(0,0)>0, and an unstable limit-cycle when F(0,0)<0. If the distance between the center of the ellipse and the origin is not greater than the distance between the ellipse and origin, then the limit-cycle is unique. Besides, we have also inverstaged the system (1) and some special cases of system (1) in §1, the system (3) as well as the more general system dx/dt=-y+xF(x,y)+gy~2+hy~3, dy/dt=xin §2, and established certain sufficient conditions for the existance of limit-cycles or non-existance of period solutions.

討論题目中P_3(x,y)与Q_3(y,x)是具实系数的三次多項式时的方程組的週期解与极限环問题。設方程組至少有一指标为+1的初等奇点且可写成下列形式 dx/dt=-y+xF_1(x,y)+gy~2+hy~3,dy/dt=x+yF_2(x,y)+rx~2+sx~3其中,F_1(x,y)与F_2(x,y)均为二次多項式。当g=h=r=s=0时,在F_1(x,y)≡F_2(x,y)或F_2(x,y)≡0的假設下,就上列方程組建立了极限环的存在唯一性定理。此外,对上列方程組本身以及其他一些特殊情况分別給出了存在极限环或不存在週期解的充分性条件。

Formulae for checking the strength of propeller with aerofoil and circular back sections are derived on the basis of analysis and empirical data. In deducing the formula, the thrust and torque force distributions along the blade are calculated by using the theoretical method, while sinθ and cosθ are expressed as the function of H/D. δη, which is taken from the Troost's propeller design chart, is introduced, when torque force is transformed into thrust. Then all the functions connected with H/D are expressed...

Formulae for checking the strength of propeller with aerofoil and circular back sections are derived on the basis of analysis and empirical data. In deducing the formula, the thrust and torque force distributions along the blade are calculated by using the theoretical method, while sinθ and cosθ are expressed as the function of H/D. δη, which is taken from the Troost's propeller design chart, is introduced, when torque force is transformed into thrust. Then all the functions connected with H/D are expressed in a single function which is presented in the expression for calculating the stress due to moment of thrust and torque force (DPK_1)/(Zbe~2cos~2ε). In deriving the stress due to centrifugal force, the expanded contour of the propeller blade is assumed as ellipse, and the radius is taken as major axis, the maximum breadth as minor axis. It is tedious to calculate the moment arm of centrifugal force according to the accurate method, hence graphical method is used to derive the same. The approximate expression for the stress due to centrifugal force is as follows:D/e is taken as 26, which is introduced only in the calculation of centrifugal force. For ordinary propeller, D/e is about 22 to 30, hence the assumption of 26 will not seriously affect the accuracy. The revolutional speed is below 800 RPM, the centrifugal force needs not to be considered for the propeller without rake. Finally, the expression for the calculation of stress and blade thickness are given as follows: In comparison with Romsom's formulae, Norwegian Classification Society formulae and Papmil's formulae, we found that the Romsom's formulae will not give the root thickness directly, successive calculations are very often required; Norwegian Classfication Society formulae are not fit for compressive stress and also for the propeller of round back section; Papmil's methods are far too complex. The method suggested in this paper is comparatively simple and process of formulation is more reasonable.

根据理論分析法,結合經驗数据,分别推导出按拉应力或压应力的机翼型、弓型螺旋桨各强度校核公式与計算叶根处厚度公式。在推导过程中,推力分布与轉力分布系按理論計算而得,并把sinθ与cosθ轉化为H/D之函数。在轉力化为推力时引进了δ_η值,該值系按楚思德图譜而得并与H/D有关。然后将所有与H/D有关之函数加以归結,使推力矩及轉力矩产生之应力表达为十分簡便之形式DPK_1/Zbe~2cos~2ε其中K_1就是所有H/D之妇結。在推导离心力及离心力矩产生之应力时,系假定叶之伸張輪廓为椭圆形,其长軸等于螺旋桨之半徑,短軸为伸張叶之最大寬度,一般商船与軍舰螺旋桨皆大致如是,为专供計算离心力之用特假定叶面为一直线,叶背为拋物綫,叶边具相当厚度,等于叶梢厚度et,而該截面面积稍稍大于弦长及厚度相同之弓形截面,而略小于普通机翼型截面,但其差别有限。在計算离心力之矩臂时若接精确計算,則十分麻煩难于处置,因此系按作图方法求离心力之矩臂基础上进行推导,經过上述假定与分析可以写出近似公式如下:K_z_(?)+K_z_s=C_oω(A/A_d)(N~2D~3/Zb)[K_o+K_2]在推导厚度公式过程中,以D/e=26来处理而D/e这一...

根据理論分析法,結合經驗数据,分别推导出按拉应力或压应力的机翼型、弓型螺旋桨各强度校核公式与計算叶根处厚度公式。在推导过程中,推力分布与轉力分布系按理論計算而得,并把sinθ与cosθ轉化为H/D之函数。在轉力化为推力时引进了δ_η值,該值系按楚思德图譜而得并与H/D有关。然后将所有与H/D有关之函数加以归結,使推力矩及轉力矩产生之应力表达为十分簡便之形式DPK_1/Zbe~2cos~2ε其中K_1就是所有H/D之妇結。在推导离心力及离心力矩产生之应力时,系假定叶之伸張輪廓为椭圆形,其长軸等于螺旋桨之半徑,短軸为伸張叶之最大寬度,一般商船与軍舰螺旋桨皆大致如是,为专供計算离心力之用特假定叶面为一直线,叶背为拋物綫,叶边具相当厚度,等于叶梢厚度et,而該截面面积稍稍大于弦长及厚度相同之弓形截面,而略小于普通机翼型截面,但其差别有限。在計算离心力之矩臂时若接精确計算,則十分麻煩难于处置,因此系按作图方法求离心力之矩臂基础上进行推导,經过上述假定与分析可以写出近似公式如下:K_z_(?)+K_z_s=C_oω(A/A_d)(N~2D~3/Zb)[K_o+K_2]在推导厚度公式过程中,以D/e=26来处理而D/e这一因素仅考虑离心力矩所引起之应力方被引进。而离心力矩所引起之应力仅占总应力之小郭分,并且一般螺旋桨D/e=22~30左右,因此无疑D/e=26来处理对准确度影响甚微。当螺旋桨无后傾角时离心力部分引起之应力甚小,只有轉速在800轉/分附近时予以考虑。故可以写成更簡便之公式。弓形螺旋桨推导过程,与机翼型相若,最后可以相信不同截面形状之螺旋桨可写成如下表达形式: 1.校核公式:[σ]≥(DPK_1/Zbe~2cos~2)ε+C_oω(A/A_d)(N~2D~3/zb)[K)o+K_2) 2.e_(0.2)R的近似表达式(D/e=26轉化): 与J.A.罗姆逊(Romsom)公式,挪威船级社(Det Norske Veritas)算式,苏联巴甫米尔方法比較之后不难发現,罗姆遜公式不能直接求出叶接处之厚度,在强度校核中若发现材料应力不足时需反复計算。挪威船級社算式,不适用于压应力,也不适用于弓型截面螺旋桨,簡化过程比較粗糙。巴甫米尔方法計算过于麻煩,玥提出新的公式計算比較簡便,合理性也有所提高。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关ellipse的内容
在知识搜索中查有关ellipse的内容
在数字搜索中查有关ellipse的内容
在概念知识元中查有关ellipse的内容
在学术趋势中查有关ellipse的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社