|
In this paper, the neural network processing principle and structure are given which are requisite for damage assessment and processing of fiberoptic array sensing signals in fiberoptic smart materials and structures Requiring of this application,the models of backpropagation neural network, self-organizing map neural network and its variants(such as LVQ1,LVQ2,LVQ3,LVQ4 and LVQ5 et al)are discribed in detail.At the same time,the simulation results are also given. 本文以光纤机敏材料与结构中的损伤估计为目的,根据光纤阵列传感信号处理的需要,在给出人工神经网络处理原理与结构基础上,结合应用详细地阐述了适用的反向传播神经网络(BP)模型、自组织特征映射神经网络(Kohonen)模型及其变化形式(LVQ_1,LVQ_2,LVQ_3,LVQ_4及LVQ_5等),同时给出了仿真实验的结果 A novel approach is introduced for composite damage assessment.The system consists of an embedded fiberoptic sensor array,Shape Memory Alloy(SMA)and Kohonen Self-Organizing Maps(SOM) neural network processor. The fiberoptic sensor array embedded in the com-posite structure can be used to detect the damages in the composite。The neural network is simu-lated by high speed Parallel Distributed Proeessing(PDP) which consists of TMS320C25 high speed processor and IBM PC/386 computer, deals with... A novel approach is introduced for composite damage assessment.The system consists of an embedded fiberoptic sensor array,Shape Memory Alloy(SMA)and Kohonen Self-Organizing Maps(SOM) neural network processor. The fiberoptic sensor array embedded in the com-posite structure can be used to detect the damages in the composite。The neural network is simu-lated by high speed Parallel Distributed Proeessing(PDP) which consists of TMS320C25 high speed processor and IBM PC/386 computer, deals with the output signals of sensors on time,and controls and actuates the shape memory alloy wires to change the strain state of the compo-site,So that,the damage of composite will be delayed。 介绍了一种复合材料损伤评估的新系统。该系统由埋入光纤传感器阵列、形状记忆合金丝和K ohonen 自组织神经网络处理器组成。由埋入光纤传感器阵列实现对材料损伤的检测,神经网络由TMS320C25 高速并行处理器和IBMPC/386组成的高速并行分布处理器进行模拟,实现传感器输出信号的实时处理,并产生相应的控制信号激励形状记忆合金丝(SMA),以改变材料的应力状态,延缓材料的破坏。 Analyses the neural networks of the feature principal comonent extraction(PCE),the self organizing feature map(SOFM),the classes augment self organizing semantic map(SOSM)and improved feature fine quantization self organizing map.By means of the feature compression of vehicles and vision analysis,the result indicates that PCE and SOFM can show similarity between objects and relative structures,have function of semantic map.The SOFM of feature fine... Analyses the neural networks of the feature principal comonent extraction(PCE),the self organizing feature map(SOFM),the classes augment self organizing semantic map(SOSM)and improved feature fine quantization self organizing map.By means of the feature compression of vehicles and vision analysis,the result indicates that PCE and SOFM can show similarity between objects and relative structures,have function of semantic map.The SOFM of feature fine quantization can achieve detail classfication as classes augment SOSM, it overcomes the drawbacks of increasing dimensions of SOSM augments input feature,unnecessary calculation and inconsistency of input feature and map result. 剖析了用神经网络实现特征主元提取(PCE)、自组织特征影射(SOFM)、类扩展自组织语义影射(SOSM)和改进的特征细化自组织影射.通过对运载工具的特征压缩,进行可视性分析,结果表明PCE和SOFM都能显示事物间的类似程度和关系结构,具有语义影射的功能.特征细化的SOFM同样能达到类扩展SOSM细化分类的功能,它克服了类扩展的SOSM增加输入特征的维数、增加不必要的计算量、输入特征与影射结果不相一致的缺点.
|