助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   genetic optimization algorithm 在 电力工业 分类中 的翻译结果: 查询用时:0.006秒
图标索引 在分类学科中查询
所有学科
电力工业
船舶工业
机械工业
更多类别查询

图标索引 历史查询
 

genetic optimization algorithm
相关语句
  “genetic optimization algorithm”译为未确定词的双语例句
    Research on the Dynamic Equivalent of Asynchronous Generators in Wind Park Based on Genetic Optimization Algorithm
    基于遗传算法的风电场异步发电机动态等值研究
短句来源
查询“genetic optimization algorithm”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  genetic optimization algorithm
2D defect reconstruction from MFL signals by a genetic optimization algorithm
      
The implemented genetic optimization algorithm proves to be very efficient in this context.
      
The corresponding multiparametric optimization problem is addressed by means of a genetic optimization algorithm.
      
An optimized tree network that provides a maximum net power density is then derived by means of a genetic optimization algorithm.
      


One advantage of multi-objective genetic optimization algorithms over classical approaches is that many non-dominated solutions can be simultaneously obtained by their single run. In this paper, we proposed a fuzzy rule-based classifier for electrical load pattern classification by using multi-objective genetic algorithm and fuzzy association rule mining. Multi-objective genetic algorithm is used to automatically select the rules with better classification accuracy and interpretability,...

One advantage of multi-objective genetic optimization algorithms over classical approaches is that many non-dominated solutions can be simultaneously obtained by their single run. In this paper, we proposed a fuzzy rule-based classifier for electrical load pattern classification by using multi-objective genetic algorithm and fuzzy association rule mining. Multi-objective genetic algorithm is used to automatically select the rules with better classification accuracy and interpretability, and the key concepts of fuzzy association rule mining are the bases of heuristic rule selection for improving the performance of genetic algorithm searching. Through computation experiments on a real power system, it is shown that the generated fuzzy rule-based classifier leads to high classification performance, and can supply more sufficient historical data for load forecasting of anomalous days, better performance of load forecasting is gained accordingly.

多目标遗传优化算法的一个优点就是可在一次迭代计算中寻找到问题的多个非劣最优解。该文应用多目标遗传算法和关联规则算法提出一个基于模糊规则的电力负荷模式分类系统。在此分类系统中采用多目标遗传优化算法从众多模糊分类规则中自动挑选出具有较好识别性能和可解释性的模糊规则,并利用模糊关联规则挖掘通过启发式规则选择改善遗传算法的搜索性能。经仿真试验表明此分类系统具有较好的分类性能,可为节假日负荷预测提供更为充分的历史数据,从而改善其负荷预测性能。

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关genetic optimization algorithm的内容
在知识搜索中查有关genetic optimization algorithm的内容
在数字搜索中查有关genetic optimization algorithm的内容
在概念知识元中查有关genetic optimization algorithm的内容
在学术趋势中查有关genetic optimization algorithm的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社