助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   ω-languages 的翻译结果: 查询用时:0.139秒
图标索引 在分类学科中查询
所有学科
计算机软件及计算机应用
更多类别查询

图标索引 历史查询
 

ω-languages
相关语句
  ω-语言
     THEORY OF ω-LANGUAGES WITH SEPARATE SYMBOL ──(Ⅱ) INTEGRATE LANGUAGES WITH ω-LA NGUAGES
     带分隔符号$的ω-语言理论──(Ⅱ)语言与ω-语言的统一
短句来源
     In this paper,a new model of ω-recognizing (ω-cycle automata) and its accepting condition(cycle accepting condition) are suggested. The set-representation of the family of ω-languages accepted by ω-cycle automata under the accepting condition is presented.
     本文提出了一种新的ω-识别模型:ω-循环自动机及其循环接受条件.给出了ω-循环自动机在该接受条件下所接受的ω-语言类的集合表示.
短句来源
     The authors have defined five kinds of ω-convex languages in ω-languages in recent years. In this paper, the hierarchy of these ω-convex languages is given. The result is:
     本文对作者几年来先后在ω-语言族中定义的五类ω-凸语言进行了相应的分层,其结果是:
短句来源
  ω-语言
     ON REGULARITY OF ω-LANGUAGES
     关于ω-语言的正则性
短句来源
     To gain insight into how the split game can be applied to attack the long-standing generalized star height 2 problem, we propose and solve the omega power problem, a similar but tractable problem in the context of ω-languages.
     为了理解这种游戏如何能被用来攻克著名的困难的star height 2问题,我们提出并且解决了star height 2问题在ω-语言理论中的一个类似的但较为容易驾驭的变种,即omega power问题。
短句来源
  “ω-languages”译为未确定词的双语例句
     So these kinds of convex substitutions are closed under corresponding ω-languages.
     从而ω-左凸语言族、ω-右凸语言族和ω-凸语言族对相应的凸置换封闭。
短句来源
     In this paper,a type of Alternating ω-Finite Automata(abbrevinted ω-UAFA)issuggested,that is,all states of Alternating ω-Finite Automata are universal states,And by adoptingthe constr ucting methed ’it is shown that the class of ω-languages accepted by the ω-UAFA is equalto the class of ω-languages accepted by the simple ω-UAFA under C_1,C_2 , C_3 and C_4 accepting condi一tions.
     本文提出了一类交替的ω-有穷自动机(ω-UAFA),并采用了构造方法证明了ω-UAFA和简单的ω-UAFA在C_1、C_2、C_5和C_4接受条件下的等价性。
短句来源
     THE PROPERTIES AND CHARACTERIZATION OF SOME KINDS ω-LANGUAGES
     关于几种ω-凸语言的某些性质与特征
短句来源
  相似匹配句对
     ω(x).
     ω(x).
短句来源
     Ω'.
     Ω'.
短句来源
     ω-ULTRALINEAR LANGUAGES
     ω超线性语言
短句来源
     ON REGULARITY OF ω-LANGUAGES
     关于ω-语言的正则性
短句来源
     Synthesis of ω-Bromoacetoacetanilide
     ω-溴代丁酮酰苯胺的合成
短句来源
查询“ω-languages”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  ω-languages
The results may help clarify the difference between deterministically and nondeterministically finite state acceptable ω-languages.
      
This paper links the concepts of Kolmogorov complexity (in complexity theory) and Hausdorff dimension (in fractal geometry) for a class of recursive (computable) ω -languages.
      
For the case of finite-state and closed ω-languages we exhibit an algorithm for the approximate calculation of the local Hausdorff dimension using the fact that, in this case, the local Hausdorff dimension and the local entropy coincide.
      
We investigate the relationship between the classes of ω-languages accepted by Turing machines according to two types of acceptance: 1) Machines of the first type are allowed to read only a finite part of the infinite input.
      


in this paper we discuss the grammatical generation for finite-turn ω-cfls,define ω-ultralinear grammars and ω-ultralinear languages,and prove that the class of ω-ultralinear languages is identical with the class of ωlanguages accepted by finite-turn ω-pda.

[1] 中定义了有穷转向的ω-pda 和ω-cfl,给出了它们的若干性质。本文讨论有穷转向的ω-cfl 的生成,定义ω超线性文法和ω超线性语言,证明ω超线性语言和有穷转向的ω-cfl是同一语言类。

An ω-language is a set consisting of infinite-strings over some alphabet ∑, the ω-language accepted by some ω-finite state automation is called the ω-regular language.Several sufficient conditions for an ω-language is an ω-regular language are given by author from the point of view of the set in [4]. In this paper, author gives still from the point of view of the set a sufficient condition for an ω-language is an ω-regular language, i.e., if L is an ω-convex language, such that L = Adh(pref(L)) = Pref(L)Tail(L),...

An ω-language is a set consisting of infinite-strings over some alphabet ∑, the ω-language accepted by some ω-finite state automation is called the ω-regular language.Several sufficient conditions for an ω-language is an ω-regular language are given by author from the point of view of the set in [4]. In this paper, author gives still from the point of view of the set a sufficient condition for an ω-language is an ω-regular language, i.e., if L is an ω-convex language, such that L = Adh(pref(L)) = Pref(L)Tail(L), then the L is an ω-regular language. Thus defined one subclass of the ω-regular languages class.

ω—语言是由有穷字母表∑上的某些无穷串组成的集合。被所谓的ω—有穷自动机接受的ω—语言称为ω—正则语言。在[4]中作者曾从集合的角度给出—ω—语言为ω—正则语言的几个充分条件。在本文作者仍从集合的角度给出一个ω—语言为ω—正则语言的充分条件,即若—ω—凸语言L满足L=adh(pref(L))=pref(L)tail(L),则L是—ω—正则语言。从而,确定了ω—正则语言类的一个子类。

This paper defined the concept of the ω-Nerode equivalence relation over Σ~ω which is determined by the ω-language over Σ and the concept of left-inverse-closed ω-language. On the base,we proved; (l)an ω-regular language can be represented by the union of some equivalence classed of some equivalence relation with finite index,left-invariant over Σ~ω. (2) The index of the ω-Nerode equivalence relation defined by an ω-regular language over Σ is finite. (3)suppose L is the left-inverse-closed ω-language over S,if...

This paper defined the concept of the ω-Nerode equivalence relation over Σ~ω which is determined by the ω-language over Σ and the concept of left-inverse-closed ω-language. On the base,we proved; (l)an ω-regular language can be represented by the union of some equivalence classed of some equivalence relation with finite index,left-invariant over Σ~ω. (2) The index of the ω-Nerode equivalence relation defined by an ω-regular language over Σ is finite. (3)suppose L is the left-inverse-closed ω-language over S,if the index of the ω-Nerode equivalence relation defined by the L is finite,then the L is ω-regular language. Thus in a class ω-language with left-inverse-closed, the character of the ω-regular language is given from algebra and set viewpoint in this paper.

本文定义了由∑上的ω-语言所确定的∑~∞上的ω-Nerode等价关系的概念以及∑上的ω-语言为左逆封闭的ω-语言的概念。在此基础上证明了:(1)∑上的ω-正则语言必可表示为∑~∞上的某个具有有穷指数的、左不变的等价关系的某些等价类之并。(2)∑上的ω-正则语言所确定的ω-Nerode等价关系的指数必有穷。(3)设L是∑上的左逆封闭的ω-语言,若L所确定的ω-Nerode等价关系的指数有穷,则L必为ω-正则语言。从而,本文从代数、集合的角度给出了在∑上左逆封闭的一类ω-语言中,ω-正则语言的特征。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关ω-languages的内容
在知识搜索中查有关ω-languages的内容
在数字搜索中查有关ω-languages的内容
在概念知识元中查有关ω-languages的内容
在学术趋势中查有关ω-languages的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社