It is found that according to the pipeline steel tube standard and the adoption of suitable technological process, WGJ510C2 steel is suitable for the manufacture of National Great Theater by using high frequency sews resistance welding methode, and each performance index is totally qualified.

Based on the ETABS procedure,the strength,rigidity and integral stability of the structural member under the action of frequently occurred earthquake are analyzed; elastodynamic time-procedure analysis on integral structure are carried out in adoption of Shanghai artificial seismic wave listed in 4 items of Code for Seismic Design of Building(DJ08—9—2003),and pushover analysis on overall structure under the action of rare occurrence earthquake is finished.

The primary study contents as follows: acquire the superhigh strength and excellent duration by adoption of the confecting technique of high performance concrete;

Impact of operating costs on investment strategies in new technology adoption with a further new technology anticipated

The adoption of new technologies often represents a crucial componet of firms' investment decisions.

This paper studies a dynamic duopoly model in which two firms compete in adoption of current technology with a further new technology anticipated.

There exist three kinds of equilibria that may occur in adoption of current technology, which mainly depends on the level of operating costs and the first-move advantage.

With the adoption of a preconcentration step, the sensitivity of our method was improved and the method detection limit (MDL) was reduced to 0.1 μg/L.

Once the configuration of a rigid frame (including the lengths, crosssections, supporting connections, etc. of all its bars) has been laid out, there exists one set of frame constants, which expresses the elastic characteristics of the frame, and, therefore, is independent of its loading condition. By employing these frame constants, not only the computations of the end moments of all the bars under any one loading condition are greatly simplified, but also, when the frame is to be analyzed under several loading...

Once the configuration of a rigid frame (including the lengths, crosssections, supporting connections, etc. of all its bars) has been laid out, there exists one set of frame constants, which expresses the elastic characteristics of the frame, and, therefore, is independent of its loading condition. By employing these frame constants, not only the computations of the end moments of all the bars under any one loading condition are greatly simplified, but also, when the frame is to be analyzed under several loading conditions, the computations related and not related to loading are distinctly separated, and, therefore, the repeated portion of computations for each loading condition, unavoidable otherwise, is entirely eliminated. As most of the rigid frames encountered in practice have to be analyzed always under many loading conditions, the practical superiority of the methods employing frame constants over other methods is thus obvious.

It is pointed out in this paper that the following apparent discrepancies exist in Coulomb's Theory: (1) In any problem in mechanics, a force to be definite must have all the three factors involved under consideration. In Coulomb's Theory, however, the point of application of the soil reaction on the plane of sliding is somehow neglected, thus enabling the arbitrary designation of the obliquity of the earth pressure on the wall to be equal to the friction angle between the wall surface and soil. As a matter...

It is pointed out in this paper that the following apparent discrepancies exist in Coulomb's Theory: (1) In any problem in mechanics, a force to be definite must have all the three factors involved under consideration. In Coulomb's Theory, however, the point of application of the soil reaction on the plane of sliding is somehow neglected, thus enabling the arbitrary designation of the obliquity of the earth pressure on the wall to be equal to the friction angle between the wall surface and soil. As a matter of principle, the point of application should never be slighted while the obliquity of the earth pressure could only have a value that is compatible with the conditions for equilibrium. (2) If the point of application of the soil reaction is taken into account in the problem, the sliding wedge would only tend to slide either on the plane of sliding or on the surface of wall but not on both at the same time, thus frustrating the very conceptidn of sliding wedge upon which Coulomb's Theory is founded. (3) The above discrepancies arise from the fact that the shape of the surface of sliding should be curvilinear in order to make the wedge tend to slide as desired, while Coulomb, however, adopted a plane surface instead. (4) Coulomb, in finding the plane of sliding, made use of the maximum earth pressure on the wall (for active pressure), which refers to the different magnitudes of pressure corresponding to different assumed inclinations of the plane of sliding. But from the relation between the yield of wall and amount of pressure, this maximum value is really the minimum pressure on the wall, which it is the purpose of the theory to find. In engineering books, however, this terminology of maximum pressure has caused considerable confusion, with the result that what is really the minimum pressure is carelessly taken as the maximum design load for the wall. How can a minimum load be used in a design?This paper also attempts to clarify some contended points in Rankine's Theory: (1) It is claimed by Prof. Terzaghi that Rankine's Theory is only a fallacy because of the yield of wall and that of the soil mass on its bed. This charge is unjust as it can be compared with Coulomb's Theory in the same respect. (2) Some books declare that Rankine's Theory is good only for walls with vertical back, but it is proved in this paper that this is not so. (3) It is also generally believed that Rankine's Theory is applicable only to wall surfaces with no friction. This is likewise taken by this paper as unfounded and illustration is given whereby, in this regard, Rankine's Theory is even better than Coulomb's, because it contains no contradiction, as does Coulomb's.

This paper is a supplement to the author's previous paper "The Constants and Analysis of Rigid Frames", published in the first issue of the Journal. Its purpose is to amplify as well as to improve the method of propagating joint rotations developed, separately and independently, by Dr. Klouěek and Prof. Meng, so that the formulas are applicable to rigid frames with non-prismatic bars and of closed type. The method employs joint propagation factor between two adjacent joints as the basic frame constant and the...

This paper is a supplement to the author's previous paper "The Constants and Analysis of Rigid Frames", published in the first issue of the Journal. Its purpose is to amplify as well as to improve the method of propagating joint rotations developed, separately and independently, by Dr. Klouěek and Prof. Meng, so that the formulas are applicable to rigid frames with non-prismatic bars and of closed type. The method employs joint propagation factor between two adjacent joints as the basic frame constant and the sum of modified stiffness of all the bar-ends at a joint as the auxiliary frame constant. The basic frame constants at the left of right ends of all the bars are computed by the consecutive applications of a single formula in a chain manner. The auxiliary frame constant at any joint where it is needed is computed from the basic frame constants at the two ends of any bar connected to the joint, so that its value may be easily checked by computing it from two or more bars connected to the same joint.Although the principle of this method was developed by Dr. Klouěek and Prof. Meng, the formulas presented in this paper for computing the basic and auxiliary frame constants, besides being believed to be original and by no means the mere amplification of those presented by the two predecessors, are of much improved form and more convenient to apply.By the author's formula, the basic frame constants in closed frames of comparatively simple form may be computed in a straight-forward manner without much difficulties, and this is not the case with any other similar methods except Dr. Klouěek's.The case of sidesway is treated as usual by balancing the shears at the tops of all the columns, but special formulas are deduced for comput- ing those column shears directly from joint rotations and sidesway angle without pre-computing the moments at the two ends of all the columns.In the method of propagating unbalanced moments proposed by Mr. Koo I-Ying and improved by the author, the unbalanced moments at all the bar-ends of each joint are first propagated to the bar-ends of all the other joints to obtain the total unbalanced moments at all the bar-ends, and then are distributed at each joint only once to arrive at the balanced moments at all the bar-ends of that joint. Thus the principle of propagating joint rotations with indirect computation of the bar-end moments is ingeneously applied to propagate unbalanced moments with direct computation of the bar-end moments, and, at the same time, without the inconvenient use of two different moment distribution factors as necessary in all the onecycle methods of moment distribution. The basic frame constant employed in this method is the same as that in the method of propagating joint rotations, so that its nearest approximate value at any bar end may be computed at once by the formula deduced by the author. Evidently, this method combines all the main advantages of the methods proposed by Profs.T. Y. Lin and Meng Chao-Li and Dr. Klouěek, and is undoubtedly the most superior one-cycle method of moment distribution yet proposed as far as the author knows.Typical numerical examples are worked out in details to illustrate the applications of the two methods.