助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   unknown words recognition 的翻译结果: 查询用时:0.009秒
图标索引 在分类学科中查询
所有学科
计算机软件及计算机应用
自动化技术
更多类别查询

图标索引 历史查询
 

unknown words recognition
相关语句
  未登录词识别
     As for shallow Chinese language parsing, the dissertation employs on hierarchical hidden Markov model to incorporate word segmentation, part-of-speech tagging, segmentation disambiguation and unknown words recognition into a unified framework.
     在中文浅层语言分析方面,本文提出了一种将汉语分词、词性标注、切分排歧和未登录词识别相结合的基于层次隐马模型的理论框架。
短句来源
     For unknown words recognition, we use different method to recognize numeric phrase, reiterative locution and name.
     在未登录词识别中,我们分别对数词短语、叠字词、名字的识别提出了不同的识别方法。
短句来源
     The study of the recognition technology of unknown words focuses on obtaining the unknown words from Web resources, and propose an algorithm on the basis of Web query logs, which analyze query word frequency for unknown words recognition.
     未登录词识别技术研究着眼于Web资源中未登录词的获取,并提出一种基于Web查询曰志的未登录词识别算法,本算法分析Web查询日志的搜索关键字频度表识别未登录词。
短句来源
  “unknown words recognition”译为未确定词的双语例句
     For Chinese word segmentation, the paper presents an improved MM segmentation algorithm, the revise strategy for disambiguation, and the statistic method for unknown words recognition based on the previous methods.
     针对中文分词技术 ,介绍了一种改进的正向最大匹配切分算法 ,以及为消除歧义引入的校正策略 ,并在此基础上结合统计方法处理未登录词。
短句来源
  相似匹配句对
     Words
     单词碰碰车
短句来源
     WORDS
     Words串串烧
短句来源
     Strategies of Tackling Unknown Words in Reading
     英语阅读过程中的生词处理策略
短句来源
     The Semantic Knowledge Acquisition of Chinese Unknown Words
     中文文本中未知词语的词义知识获取
短句来源
     The Unknown Britain
     鲜为人知的英国点滴
短句来源
查询“unknown words recognition”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


Unknown word recognition is one of the challenging tasks in natural language processing research.This paper proposes a place name identification model in dictionary based Chinese word segmentation,in which we used statistical information drawn from a training corpus to calculate lexical reliability and contextual reliability.The rules of Chinese place names are also used in the model.We applied this approach to a Chinese morphological analysis system,and achieved 90.24% recall and 93 14% precision...

Unknown word recognition is one of the challenging tasks in natural language processing research.This paper proposes a place name identification model in dictionary based Chinese word segmentation,in which we used statistical information drawn from a training corpus to calculate lexical reliability and contextual reliability.The rules of Chinese place names are also used in the model.We applied this approach to a Chinese morphological analysis system,and achieved 90.24% recall and 93 14% precision in close test,while the recall and precision also reach 86 86% and 91 48% in open test.

本文针对有特征词的中文地名识别进行了研究。该系统使用从大规模地名词典和真实文本语料库得到的统计信息以及针对地名特点总结出来的规则 ,通过计算地名的构词可信度和接续可信度从而识别中文地名。该模型对自动分词的切分作了有效的调整 ,系统闭式召回率和精确率分别为 90 2 4 %和 93 14 % ,开式召回率和精确率分别达 86 86 %和 91 4 8%。

Automatic recognition of Chinese personal name is emphasis and difficulty for unknown words recognition. Because of their inherent deficiencies, previous solutions are not satisfactory. This paper presents an approach for Chinese personal name recognition based on role tagging. That is: tokens after segmentation are tagged using Viterbi algorithm with different roles according to their functions in the generation of Chinese personal name; The possible names are recognized after maximum pattern matching...

Automatic recognition of Chinese personal name is emphasis and difficulty for unknown words recognition. Because of their inherent deficiencies, previous solutions are not satisfactory. This paper presents an approach for Chinese personal name recognition based on role tagging. That is: tokens after segmentation are tagged using Viterbi algorithm with different roles according to their functions in the generation of Chinese personal name; The possible names are recognized after maximum pattern matching on the roles sequence. During the recognition process, only the possibilities of tokens being specific roles and the transition possibilities between roles are required. The significance is that such lexical knowledge can be totally extracted from corpus automatically. In both close and open test on a 16 Mbyte realistic corpus, its recalling rate is nearly 98%. After combined with the algorithm for personal name recognition, authors’ Chinese lexical analysis system ICTCLAS improves 1.41% in performance while the agglomerative evaluation argument F 1 value of person recognition achieve 95.40%. Various experiments show that: role based algorithm proposed in this paper is effective for Chinese personal name recognition.

该文提出了一种基于角色标注的中国人名自动识别方法 .其基本思想是 :根据在人名识别中的作用 ,采取Viterbi算法对切词结果进行角色标注 ,在角色序列的基础上 ,进行模式最大匹配 ,最终实现中国人名的识别 .识别过程中只需要将某个词作为特定角色的概率以及角色之间的转移概率 .该方法的实用性还在于 :这些角色信息完全可以从真实语料库中自动抽取得到 .通过对 16M字节真实语料库的封闭与开放测试 ,该方法取得了接近 98%的召回率 .文中介绍了计算所汉语词法分析系统ICTCLAS ,集成人名识别算法之后 ,词法分析的准确率提高了 1.4 1% ,同时人名识别的综合指标F 1值达到了 95 .4 0 % .不同实验从各个角度表明 :基于角色标注的人名识别算法行之有效

Two key techniques in the development of Chinese Information Retrieval System are discussed in this paper, i.e., Chinese word segmentation and search technique. For Chinese word segmentation, the paper presents an improved MM segmentation algorithm, the revise strategy for disambiguation, and the statistic method for unknown words recognition based on the previous methods. For search technique, the paper summarizes the principle of several kinds of search models, and analyzes the advantages and disadvantages...

Two key techniques in the development of Chinese Information Retrieval System are discussed in this paper, i.e., Chinese word segmentation and search technique. For Chinese word segmentation, the paper presents an improved MM segmentation algorithm, the revise strategy for disambiguation, and the statistic method for unknown words recognition based on the previous methods. For search technique, the paper summarizes the principle of several kinds of search models, and analyzes the advantages and disadvantages of each model simply. At last, the given segmentation algorithm is evaluated, and the results reveal that the veracity and efficiency of the algorithm can satisfy the applied request.

文中论述了在开发中文信息检索系统中所涉及到的两项关键技术 ,即中文分词技术和检索技术。针对中文分词技术 ,介绍了一种改进的正向最大匹配切分算法 ,以及为消除歧义引入的校正策略 ,并在此基础上结合统计方法处理未登录词。针对检索技术 ,综述了几种最常用的检索模型的原理 ,并对每种模型的优缺点进行了简要分析。最后对给出的分词算法进行了测试 ,测试结果表明该分词算法准确度和效率能够满足实用的要求

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关unknown words recognition的内容
在知识搜索中查有关unknown words recognition的内容
在数字搜索中查有关unknown words recognition的内容
在概念知识元中查有关unknown words recognition的内容
在学术趋势中查有关unknown words recognition的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社