助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   learning power 的翻译结果: 查询用时:0.008秒
图标索引 在分类学科中查询
所有学科
成人教育与特殊教育
中等教育
医学教育与医学边缘学科
临床医学
企业经济
更多类别查询

图标索引 历史查询
 

learning power
相关语句
  学习力
     The cultivation of learners' learning power caters to the demand of lifelong learning, quality-oriented education and open and distance education.
     培养学习者的学习力,体现了终身学习的理念,符合素质教育的要求,也是远程开放教育所必需的。
短句来源
     Creating leaning nursing team is the guarantee of the sustainable development of hospitals. Learning mentally retardation is the main influence factor on learning power.
     创建学习型护理团队是医院可持续发展的保证,学习智障是学习力中的主要影响因素。
短句来源
     The Purpose of Teaching Is Not to Teach——Thought on Learning Power of Distance Learners
     教是为了不教——对培养远程学习者学习力的思考
短句来源
     Improving the learning power and team quality of the nursing staff
     提高护理队伍学习力 增强团队整体素质
短句来源
     The harmonious power in the enterprise is composed of hard harmonious power and soft harmonious power,and the innovative power is composed of learning power and innovatory power.
     企业的和谐力由硬性和谐力和软性和谐力组成,企业的创新力由学习力和革新力组成。
短句来源
更多       
  学习动力
     The paper analyze the learning dynamical mechanism in U/I collaboration Innovation and point out that the learning performance of U/I collaboration innovation are influenced by learning power, Knowledge trait, both sides of cooperative learning capability and knowledge base.
     本文通过 U/ I合作创新中学习动力机制的分析 ,指出 U/ I合作创新中的学习绩效受学习动力、知识特性、双方组织协同学习能力以及合作双方知识基础的影响。
短句来源
     After analyzing the theory of organizational learning, this paper induced and generalized the five dimensions of implementing the theory of organizational learning into building learning organization, including learning power, organization transformation, leader empowerment, knowledge management, information technology, then analyzed these organizational characteristics and management practices which could lead to learning in this five dimensions.
     在分析组织学习有关理论的基础上,归纳、概括出学习型组织的五个维度:学习动力、组织转型、领导授权、知识管理和信息技术,并分析了五个维度中有利于组织学习的组织特征和管理实践。
短句来源
     Teaching reformation should strengthen student,s learning power.
     教学方法改革要增强学生的学习动力
短句来源
     Learning motivation is inner learning power, and plays an utmost important role in the individual learning activities .
     学习动机是内在的学习动力,在个体的学习活动上起着至关重要的作用。
短句来源
  “learning power”译为未确定词的双语例句
     At the same time, it also introduces the researching on the establishment of learning organization by domestic and abroad research workers especially the present situation of learning power network enterprise.
     本文第一章首先从学习型组织对企业生存与发展的重要性和电网企业面临的形势两个方面论述了建立学习型电网企业的必要性,同时介绍了国内外在研究学习型组织尤其是学习型电力企业方面的现状。
短句来源
     Because of its excellent learning power, thistechnology has turned into the topic of machine learning, and also gained successfulapplications in many fields, such as handwriting digit recognition, voice recognition, facedetection, and etc.
     由于支持向量机出色的学习性能,该技术已成为机器学习界的研究热点,并在很多领域,如手写数字识别、语音识别、人脸图像识别、文章分类、时间序列预测等问题,得到了成功的应用。
短句来源
     Because of its excellent learning power, this technology has been the topic of machine learning.
     由于支持向量机出色的学习性能,该技术已成为机器学习界的研究热点,并在很多领域得到了成功的应用。
短句来源
     We must build power running mechanism where learning power is dominant and establish host position of teachers in university academic administration activity.
     在学术管理活动中必须建立以学术权力为主导的权力运行机制 ; 必须确立教师在大学学术管理中的主体地位
短句来源
     Research of Establishing Learning Power Network Enterprise Basing on Customer Orientation
     建立基于客户导向的学习型电网企业研究
短句来源
更多       
查询“learning power”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  learning power
It combines the explicit knowledge representation of FIS with learning power of neural networks.
      
It is a critical period where learning power can be built or shifted, where learning can be exciting and personal, or dull and irrelevant.
      
Radical change through radical means: learning power
      
Learning Power: Organization for Education and Justice
      
We study how the learning power varies with these parameters.
      
更多          


An analysis of unreasonable factor in construction of order parameters in synergetic approach is presented in this paper. It is proved that the unreasonable factor during the dynamic system can be overcome through reconstruction of order parameters. A way of reconstruction of order parameters based on award\|penalty learning mechanism is proposed, which can figure out a group of linear transformation parameters for order parameters using self\|learning power of synergetic neural networks and award\|penalty...

An analysis of unreasonable factor in construction of order parameters in synergetic approach is presented in this paper. It is proved that the unreasonable factor during the dynamic system can be overcome through reconstruction of order parameters. A way of reconstruction of order parameters based on award\|penalty learning mechanism is proposed, which can figure out a group of linear transformation parameters for order parameters using self\|learning power of synergetic neural networks and award\|penalty learning mechanism. The test on samples from real application shows that the new approach can improve the recognition rate greatly and has bright application prospect. Additionally, in order to guide the selection of parameter δ to obtain the best train performance, the influence of parameter δ of award\|penalty learning mechanism on the performance of training is discussed.

分析了协同方法中序参量在模式识别过程中存在的不合理因素 ,阐述了经过序参量重构的协同方法能够有效地克服这些不合理因素 ,从而提高模式识别性能 .为了获得序参量重构参数 ,提出了基于奖惩学习算法的重构参数的搜索算法 ,该算法结合协同神经网络的自学习能力和奖惩学习算法的搜索能力来训练序参量重构参数 .利用从实际应用中得到的样本对新算法进行的测试表明 ,新算法确实能找到一组序参量重构参数使识别性能得到较大提高 ,具有很好的实用性 .另外 ,还讨论了奖惩学习算法中参数 δ对新算法的训练性能的影响 ,以期指导参数 δ的选取 ,从而达到最佳的训练效果

This paper presents an automatic system for human face and moving object recognition. The system developed is based on a novel recurrent stochastic neural network, it has a strong learning power and is able to recognize a moving target in real time. The detection of the moving object is implemented by utilizing the skin color distribution and the motion information. The object is tracked in real time with an efficient adaptive mean shift algorithm. The work in this paper is mainly focused on the disign...

This paper presents an automatic system for human face and moving object recognition. The system developed is based on a novel recurrent stochastic neural network, it has a strong learning power and is able to recognize a moving target in real time. The detection of the moving object is implemented by utilizing the skin color distribution and the motion information. The object is tracked in real time with an efficient adaptive mean shift algorithm. The work in this paper is mainly focused on the disign of the novel recurrent neural network and the efficient incremental Boltzmann learning algorithm. The improved simulated annealing technique is also discussed. Theoretical results offer a unique solution to the training of a large size network. Experiments on human face recognition are carried out with a recurrent neural network of 4827 neurons and 129951 connections. The results show the performance of the recognizer is comparable to that of the well known TrueFace system.

针对复杂运动目标识别问题 ,提出了一个基于反馈型随机神经网络的动态人脸与物体的自动识别系统 ,该系统具有强大学习能力 ,运动目标检测与识别快速准确等特点 .在对该系统的核心——反馈型二元网络进行深入分析的基础上 ,提出了一种适合于该神经网络模型的高效渐进式 Boltzmann学习算法 .实验结果表明 ,该识别系统性能优异 ,在几个方面超过了 e True公司的 True Face人脸识别系统 .

The new development of transformer protection researches both in China and abroad since 1997 is outlined.The wavelet theory has developed quickly and has character of multi-distinction on the signal analysis.The artificial neural network can be used for the status recognition and has the advantage of strong self-adaptation,error toleration,self-learning power and so on.

论述了自 1997年以来国内外有关变压器继电保护研究方面的最新进展 :最近发展起来的小波理论对信号分析具有多分辨率的特点 ,已经在变压器保护的最新研究和分析中得到广泛的关注 ;用于状态辨识的人工神经网络因其具有高度神经计算能力、极强的自适应性、容错性以及自学习能力等特点 ,其在变压器保护中的应用也已成为变压器保护研究的另一个热点 ;还有其它一些新的变压器保护理论和思想都取得了一定的进展。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关learning power的内容
在知识搜索中查有关learning power的内容
在数字搜索中查有关learning power的内容
在概念知识元中查有关learning power的内容
在学术趋势中查有关learning power的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社