 全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多   power automorphism 的翻译结果: 查询用时：0.009秒 在分类学科中查询 所有学科 数学 更多类别查询 历史查询  power automorphism 幂自同构(1)  幂自同构
 (3) G= PH, in which P ∈Sylp(G), p = min(π(G )), H is abelian, and P can not acttrivially on any non-trivial subgroup of H, and every non-identity element of P induces a power automorphism of Hby conjugating. （2）G＝PH，其中P∈Sylp，（G），p＝min（π（G）），H是Abel群，并且P不能平凡作用于H的任一≠1的子群，P的每个≠1的元诱导H的一个幂自同构． 短句来源 “power automorphism”译为未确定词的双语例句
 In this paper, we show that if a finite group G has a fixed-point-free weak power automorphism, then G is a Dedekind group. 本文给出了Dedekind群的一个刻画．即如果一个群G有一个无不动点的弱幂同构，则G是一个Dedekind群 短句来源 相似匹配句对
 POWER 清华的力量 短句来源 power; 权力 ; 短句来源 Automorphism of Hypergroups 幂群的内自同构 短句来源 查询“power automorphism”译词为用户自定义的双语例句

我想查看译文中含有：的双语例句  power automorphism
 Several examples ofp-groups having large power automorphism groups are given. It is proved that the nilpotence class of a metabelianp-group of exponentp2 possessing a nontrival power automorphism is bounded by a function ofp. The main purpose of the present paper is proving the following two theorems: I. For a finite groupG, the following statements are equivalent: (1)every Sylow group of G is semi-normal; (2)every subgroup of G issemi-normal ; (3)every subgroup of G is S-semi-normal; (4) every Sylow subgroup of G is strong-semi-normal;(5)every subgroup of G is semi-normal or self-normal ; (6)every subgroup of G is S -semi-normal or self-normal;(7) G is generalized nilpotent ; let H/K be any chief factor of G, G/CG(H/K) is a cyclic... The main purpose of the present paper is proving the following two theorems: I. For a finite groupG, the following statements are equivalent: (1)every Sylow group of G is semi-normal; (2)every subgroup of G issemi-normal ; (3)every subgroup of G is S-semi-normal; (4) every Sylow subgroup of G is strong-semi-normal;(5)every subgroup of G is semi-normal or self-normal ; (6)every subgroup of G is S -semi-normal or self-normal;(7) G is generalized nilpotent ; let H/K be any chief factor of G, G/CG(H/K) is a cyclic group of order a primePower which is coprime with |H/K|. Ⅱ. For a finite group G, the following three statements are equivalent: (1)every subgroup of Cis S -semi-normal or self-normal, and C has truly self-normal Sylow subgroups; (2) G=PH,p ∩H = 1, in which, P ∈sylp(G), p = min(π(G)), NG(P) = P, H = K∞(G ), is the nilpotent residual of G,and KG, K ≤ H; (3) G= PH, in which P ∈Sylp(G), p = min(π(G )), H is abelian, and P can not acttrivially on any non-trivial subgroup of H, and every non-identity element of P induces a power automorphism of Hby conjugating. 本文的主要目的是证明如下两个定理：Ⅰ．对于有限群Ｇ，下列命题等价：（１）Ｇ的ｓｙｌｏｗ子群皆半正规；（２）Ｇ的子群皆半正规；（３）Ｇ的子群皆Ｓ－半正规；（４）Ｇ的Ｓｙｌｏｗ子群皆强半正规；（５）Ｇ的子群皆半正规或自正规；（６）Ｇ的子群皆Ｓ－半正规或自正规；（７）Ｇ是广幂零群；令Ｈ／Ｋ是Ｇ的任一主因子，则Ｇ／ＣＧ（Ｈ／Ｋ）是阶与｜Ｈ／Ｋ｜互素的素数幂阶循环群．Ⅱ．对于有限群Ｇ，下列命题等价：（１）Ｇ的子群皆Ｓ－半正规或自正规，且Ｇ确有自正规的Ｓｙｌｏｗ子群；（２）Ｇ＝ＰＨ，Ｐ∩Ｈ＝１．其中Ｐ∈Ｓｙｌｐ，（Ｇ），Ｐ＝ｍｉｎ（π（Ｇ）），ＮＧ（Ｐ）＝Ｐ，Ｈ＝Ｋ∞（Ｇ）是Ｇ的幂零剩余，并且Ｋ≤Ｈ，均有Ｋ　Ｇ；（２）Ｇ＝ＰＨ，其中Ｐ∈Ｓｙｌｐ，（Ｇ），ｐ＝ｍｉｎ（π（Ｇ）），Ｈ是Ａｂｅｌ群，并且Ｐ不能平凡作用于Ｈ的任一≠１的子群，Ｐ的每个≠１的元诱导Ｈ的一个幂自同构． In this paper,it is shown that a finite group G is abelian if and only if G satisfies the following conditions : (Ⅰ) G has a power automorphism Q such that C_G(a) is an elementary abelian 2-group. (Ⅱ )G has no subgroup isomorphic to 2-group < a,b|a~2~n= b~2~m = 1,a~b = a~1+2~(n+1) > where n ≥ 3 and n≥m. In addition, applying the above result, the author also proves that if a finite group G has a power automorphism Q such that C_G(a) is an elementary abelian 2-group, then G is nilpotent. 本文证明了有限群Ｇ是Ａｂｅｌ群当且仅当Ｇ_ｒ满足下列条件：（Ⅰ） Ｇ有一个幂自同构 ａ使得 ＣＧ（ａ）是一个初等 ＡｂｅｌＺ一群．（Ⅱ）Ｇ没有子群与２－群＜ａ，ｂ｜ａ~２~ｎ＝ｂ~２~ｍ＝１，ａ~ｂ＝ａ~（１＋２）~（ｎ－１）＞同构，其中ｎ≥３，ｎ≥ｍ．利用该结果，作者还证明若有限群Ｇ有一个幂自同构ａ使得Ｃ_Ｇ（ａ）是一个初等Ａｂｅｌ２－群，则Ｇ是幂零群 In this paper, we show that if a finite group G has a fixed-point-free weak power automorphism, then G is a Dedekind group. 本文给出了Ｄｅｄｅｋｉｎｄ群的一个刻画．即如果一个群Ｇ有一个无不动点的弱幂同构，则Ｇ是一个Ｄｅｄｅｋｉｎｄ群 相关查询

 CNKI小工具 在英文学术搜索中查有关power automorphism的内容 在知识搜索中查有关power automorphism的内容 在数字搜索中查有关power automorphism的内容 在概念知识元中查有关power automorphism的内容 在学术趋势中查有关power automorphism的内容

 CNKI主页 |  设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索 2008 CNKI－中国知网 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社