助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   strongly accretive 的翻译结果: 查询用时:0.009秒
图标索引 在分类学科中查询
所有学科
数学
更多类别查询

图标索引 历史查询
 

strongly accretive
相关语句
  强增生
     Mann Iterative for Strongly Accretive Mapping is L_P(P<2) Spaces
     L_P(P<2)空间中强增生映射的Mann迭代
短句来源
     Let E be an arbitrary real Banach space, and T∶E→E be a Lipschitz strongly accretive operator.
     设E是任意实Banach空间 ,T∶E→E是Lipschitz强增生算子 .
短句来源
     Let E be a real Banach space and T:D(T)E→E be a Lipschitzian and strongly accretive operator with an open domain D(T).
     设E为实Banach空间,T:D(T)E→E是Lipschitz强增生算子,具有开定义域D(T).
短句来源
     Suppose X is a real Banach space and H∶X→X is a Lipschitz operator, T∶X→X uniformly continuous with the bounded range and H+T strongly accretive, then the Ishikawa and Mann iterative processes with errors converge strongly to the unique solution of the equation Hx+Tx=f.
     设 X是实 Banach空间 ,H∶ X→ X是 L ipschitz算子 ,T∶ X→ X是值域有界且一致连续的算子 ,H + T是强增生算子 ,则具有误差项的 Ishikawa和 Mann迭代序列强收敛到方程 H x + Tx =f的唯一解 .
短句来源
     Let 1 < p ≤ 2 , X be a rea lp -uniformly smooth Banachspace, and T:X →X be a strongly accretive operator.
     设1强增生算子.
短句来源
更多       
  强增殖
     In uniformly smooth Banach spaces,the Ishikawa iteration process which con-verges strongly to the unique solution of Lipschitzian strongly accretive operator equations isproved.
     在一致光滑Banach空间证明了Ishikawa迭代序列强收敛到Lipschitzlan强增殖算子方程Tx=y的唯一解。
短句来源
     In this paper,we prove,in uniformly smooth Banach space,that Mann and Ishikawa iteration processes converge strongly to the unique solution of the equation Tx=f in case T is a locally strongly accretive mapping,or to the unique fixed point of a Lipschitzian and locally strictly pseudocontractive mapping.
     在一致光滑Banach空间中证明Mann和Ishikawa迭代方程收敛于局部强增殖算子方程Tx=f的唯一解,或Lipschitz局部严格伪压缩映象的唯一不动点。
短句来源
     ITERATIVE SOLUTIONS TO EQUATIONS OF LOCALLY STRONGLY ACCRETIVE MAPPINGS IN UNIFORMLY SMOOTH BANACH SPACES
     一致光滑Banach空间中局部强增殖算子方程的迭代解
短句来源
     ISHIKAWA ITERATION METHODS FOR A SOLUTION OF NONLINEAR LIPSCHITZIAN STRONGLY ACCRETIVE OPERATOR EQUATIONS IN UNIFORMY SMOOTH BANACH SPACES
     Banach空间Lipschitzian强增殖算子方程解的Ishikawa迭代方法
短句来源
     Iterative Construction of Solution to Nonlinear Equations of Lipschitzian and Local Strongly Accretive Operators
     Lipschitz局部强增殖算子的非线性方程的解的迭代构造
短句来源
更多       
  “strongly accretive”译为未确定词的双语例句
     Let X be a uniformly convex Banach space, T : XD(T)→ X be an m-accretive and also strongly accretive operator, T0 : X→X be a linear compact operator, and C : X→ X be a completely continuous operator.
     设X为一致凸的Banach空间,T:X(?) D(T)→X为m—增生的且强增生的算子,T_0:X→X为线性紧算子。
短句来源
     T: X→X is a uniformly continuous opera-ter with bounded range , and H + T is strongly accretive , Then the Ishikawa iteration process with errors converges strongly to the unigue Solution of the equation Hx+Tx=f .
     T:X→X是一致连续且值域有界,则带误差型的Ishikawa序列强收敛于方程Hx+Tx=f的唯一解。
短句来源
     Suppose that X is a real Banach space, H:X→X is Lipschitz operator, T:X→X is uniformly continuous with bounded range, H+T is strongly accretive. Then Mann and Ishikawa iterative processes converge strongly, almost stably, to the unique solution of the equation Hx+Tx=f. 
     设X是实Banach空间,H:X→X是Lipschitz算子,T:X→X是一致连续的且值域有界,H+T是强增生的,则Mann和Ishikawa迭代程序几乎稳定地强收敛到方程Hx+Tx=f的唯一解.
短句来源
     AN ITERATIVE PROCESS FOR NONLINEAR LIPSCHITZIAN STRONGLY ACCRETIVE MAPPING IN Lp SPACES
     L_p空间非线性Lipschitz严格增殖映射的迭代过程
短句来源
     ITERATIVE SOLUTION OF OPERATOR EQUATIONS OF THE Φ_STRONGLY ACCRETIVE TYPE
     Φ-增生型算子方程的迭代解
短句来源
更多       
查询“strongly accretive”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  strongly accretive
This paper deals with the characterization of M-matrices and H-matrices, with positive diagonal entries, in term of strongly accretive matrices.
      
LetT: X → X be a Lipschitzian and strongly accretive map with constantk ? (0, 1) and Lipschitz constantL.
      
An iterative process for nonlinear lipschitzian and strongly accretive mappings in uniformly convex and uniformly smooth Banach
      
Suppose that X is an arbitrary real Banach space and T : X→X is a Lipschitzian and -strongly accretive operator.
      
The stability of the Ishikawa iteration procedures was studied for one class of continuity strong pseudocontraction and continuity strongly accretive operators with bounded range in real uniformly smooth Banach space.
      
更多          


We discuss the projectional approximatlon-solvability for a class of nonlinearevolution equations in Banach spaces given by-(du)/(dt)=A(t)u+B(t)u,u(0)=u_6,where {A(t);t(?)R~+}and{B(t);t(?)R~(?)}are two families of densely defined nonlinearoperators.Operators A(t)are strongly accretive and operators B(t)are lower-semibounded.The error estimations are given in Hilbert spaces.

本文在Banach 空间中讨论了一类形为-(du)/(dt)=A(t)u+B(t)u的发展型算子方程的投影法近似可解性,并在Hilbert 空间中给出敛速估计.其中,{A(t);tεR~+}和{B(t);tεR~+}为两族稠定非线性算子,A(t)是强增生的,B(t)是下半有界的.

This paper discusses the convergence of Ishikawa iteation and Mann iteation of so-lutions of equations for Lipschitzian strongly accretive mappings in uniform convex Banachspaces. These results answer partially two questions of Chidume.

本文讨论一致凸Banach空间中的Lipschitz强增殖映射方程解的Ishikawa迭代和Mann迭代的收敛性,部分回答了Chianme提出的两个问题。

Suppose that K is a non-empty subset of a uniformly smooth Banach space X. Let T:K→X be a Lipschitz local strictly pseudocontractive mapping.In this paper,the iterative sequence which converges strongly to the unique fixed point of T is given. A related result deals with the problem that the Ishikawa itera-tion process converges strongly to a solution of the equat ion Tx=f when T is Lipschitzian and local strongly accretive in X.

设K是一致光滑Banach空间K的非空子集,T:K→X是Lipschitz局部严格伪压缩映象。本文给出一个迭代序列强收敛到T的唯一不动点,并给出一个涉及Lipschitz局部强增殖映象T的非线性方程Tx=f的解的迭代逼近。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关strongly accretive的内容
在知识搜索中查有关strongly accretive的内容
在数字搜索中查有关strongly accretive的内容
在概念知识元中查有关strongly accretive的内容
在学术趋势中查有关strongly accretive的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社