助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   retrace point 的翻译结果: 查询用时:0.156秒
图标索引 在分类学科中查询
所有学科
物理学
电力工业
更多类别查询

图标索引 历史查询
 

retrace point
相关语句
  折返点
     From magnetic field equation and the principle of the work and energy, We derive the effect of the magnetic field gradient and magnetic flux invariance. Further, we obtain the axial magnetic field intensity at the retrace point of the charged particle in magnetic constrain device.
     根据磁场方程和功能原理,导出了磁场梯度效应,并得到磁通不变原理,从而找到,在磁约束装置中,带电粒子折返点处的轴向场强.
短句来源
  “retrace point”译为未确定词的双语例句
     THE MAGNETIC FIELD INTENSITY AT THE RETRACE POINT OF CHARGED PARTICLE
     带电粒子折返点的场强
短句来源
  相似匹配句对
     THE MAGNETIC FIELD INTENSITY AT THE RETRACE POINT OF CHARGED PARTICLE
     带电粒子折返点的场强
短句来源
     Point of view
     观点
短句来源
     HOT POINT
     热点问题
短句来源
查询“retrace point”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


From magnetic field equation and the principle of the work and energy, We derive the effect of the magnetic field gradient and magnetic flux invariance. Further, we obtain the axial magnetic field intensity at the retrace point of the charged particle in magnetic constrain device.

根据磁场方程和功能原理,导出了磁场梯度效应,并得到磁通不变原理,从而找到,在磁约束装置中,带电粒子折返点处的轴向场强.

The group velocity mismatch between the fundamental pulses and second harmonic pulses is the major influence on the bandwidth of second-harmonic(SH),however,the simultaneously phase-and group-velocity matching can be achieved at the retracing point of the phase-matching curve,and the theoretical calculations show that efficient second harmonic generation with a broad bandwidth can be obtained with this method.Then the input pulses at 1053 nm with a bandwidth of 31nm and energy of 620 μJ are frequency-doubled...

The group velocity mismatch between the fundamental pulses and second harmonic pulses is the major influence on the bandwidth of second-harmonic(SH),however,the simultaneously phase-and group-velocity matching can be achieved at the retracing point of the phase-matching curve,and the theoretical calculations show that efficient second harmonic generation with a broad bandwidth can be obtained with this method.Then the input pulses at 1053 nm with a bandwidth of 31nm and energy of 620 μJ are frequency-doubled with a 10 mm KD~*P crystal and a 12 mm KDP crystal,respectively.The output SH bandwidth in the first situation is 22 nm,much lager than 7 nm of the second configuration.The experimental results which are in agreement with the theoretical calculation show the sufficiency of the second harmonic generation configuration at the retracing point.The corresponding conversion efficiency with KD~*P crystal is 25%,which is higher than the later one with efficiency of 20%.The major influence on the conversion efficiency is the poor beam quality of the fundamental pulses.

在二次谐波转换中,基频光和倍频光的群速失配是限制转换带宽的主要因素。利用折返点匹配的宽带谐波转换技术能同时实现基频光和倍频光的相位匹配和群速匹配,理论计算表明在折返点匹配的情况下,倍频转换带宽将显著增加。分别利用厚度10 mm,氘含量12%的KD*P晶体和厚度12 mm的KDP晶体对中心波长为1053 nm,谱宽为31 nm,能量为620μJ的基频光进行折返点匹配二倍频和传统二倍频的对比实验,前者取得了22 nm的转换带宽,远大于后者7 nm的转换带宽。实验结果证实了理论计算的正确性,显示了折返点匹配宽带谐波转换技术的优越性。相应地,前者转换效率为25%,大于后者20%的转换效率,导致倍频转换效率较低的主要因素是入射基频光的光束质量和光谱质量较差。

A novel second-harmonic generation scheme is proposed to compensate group velocity dispersion effects.In the scheme,a proper pre-chirp is introduced to the fundamental harmonic pulse to interact with dispersion,actively control its pulse width and raise the conversion efficiency.The result shows that the method improves the conversion efficiency of high harmonic greatly.For KD*P crystal with 12.6% deuterium,at the retracing point of phase matching,the conversion efficiency of the fundamental harmonic reaches...

A novel second-harmonic generation scheme is proposed to compensate group velocity dispersion effects.In the scheme,a proper pre-chirp is introduced to the fundamental harmonic pulse to interact with dispersion,actively control its pulse width and raise the conversion efficiency.The result shows that the method improves the conversion efficiency of high harmonic greatly.For KD*P crystal with 12.6% deuterium,at the retracing point of phase matching,the conversion efficiency of the fundamental harmonic reaches the top at the crystal center,nearly 22%,and the optimal chirp compensation is obtained,for pulse width of 30 fs and central wavelength of 1053 nm.The relationship of conversion efficiency,conversion bandwidth and the crystal length is also studied.

提出了一种啁啾补偿群速色散的倍频方法,通过向入射基频光引入合适的初始啁啾,让其与色散相互作用,以实现对基频光脉冲宽度的主动控制,提高转换效率。研究结果表明,这种方法能显著地提高倍频转换效率,以氘含量12.6%(摩尔百分比)的KD*P晶体对脉宽30fs,中心波长为1.053μm的宽带基频光的折返点匹配宽带二倍频过程为例,当基频光转换极限位置处于晶体中心时,能取得最佳的啁啾补偿效果,转换效率可提高近22%。进一步研究了转换效率和转换带宽与晶体长度的关系。

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关retrace point的内容
在知识搜索中查有关retrace point的内容
在数字搜索中查有关retrace point的内容
在概念知识元中查有关retrace point的内容
在学术趋势中查有关retrace point的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社