 全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多   monotone polygon 的翻译结果: 查询用时：0.008秒 在分类学科中查询 所有学科 计算机软件及计算机应用 更多类别查询 历史查询  monotone polygon 单调多边形(2)  单调多边形
 Triangulate partitioning monotone polygon with Visual C~(++) VisualC~(++)实现单调多边形三角剖分 短句来源 Aiming at existing triangulate partitioning monotone polygon Algorithmic, the text gives an O(N) Algorithmic and Accomplish it with Visual C ++ . 针对现有单调多边形算法的不足 ,提出一个复杂度为O(N)的算法 ,并在VisualC+ + 环境下实现这个算法 短句来源 “monotone polygon”译为未确定词的双语例句
 , so we get an algorithm to triangulate a monotone polygon in O(1) time on an n×n reconfigurable mesh. By generalizing these algorithms and using a little more processors, we obtain another algorithm to triangulate a simple polygon in O(1) time on an n×n 1+ε reconfigurable mesh, where 0< ε <1 is a constant. 将这些算法稍加推广 ,并使用稍多的处理器 ,得到了一个在规模为 n× n1 +ε(0 <ε<1为常数 )的可重构造网孔机器上三角剖分简单多边形的常数时间算法 . 短句来源 相似匹配句对
 Simple Polygon Distance Algorithm Based on Monotone Chains 基于单调链的简单多边形距离算法 短句来源 Triangulate partitioning monotone polygon with Visual C~(++) VisualC~(++)实现单调多边形三角剖分 短句来源 The Monotone Function on the L~p Space L~p空间的单调函数 短句来源 On Mixed Monotone Operators 关于混合单调算子 短句来源 LOD and Polygon Simplification LOD和多边形表面简化 短句来源 查询“monotone polygon”译词为用户自定义的双语例句

我想查看译文中含有：的双语例句 没有找到相关例句 Triangulate partitioning polygon is geometric primitives of computational geometric. It can predigest dimensions. There are many applications in graphics and other fields. Low complexity is the basic requirement in algorithmic designing. Aiming at existing triangulate partitioning monotone polygon Algorithmic, the text gives an O(N) Algorithmic and Accomplish it with Visual C ++ . 多边形三角剖分是计算几何的一个几何基元 .它可以简化问题规模 ,在计算机图形学、模式识别和地理数据库方面有重要应用 .低时间复杂度是设计多边形三角剖分算法的基本要求 .针对现有单调多边形算法的不足 ,提出一个复杂度为O(N)的算法 ,并在VisualC+ + 环境下实现这个算法 Triangulation of simple polygons is one of the fundamental problems in computational geometry, and has many important applications in computer graphics, geographical information systems, finite element methods, and many other fields. The reconfigurable mesh consists of an array of processors interconnected by a reconfigurable bus system. The bus system can be used to dynamically obtain various interconnection patterns among the processors. Recently, this model has attracted a lot of attention. The main contribution... Triangulation of simple polygons is one of the fundamental problems in computational geometry, and has many important applications in computer graphics, geographical information systems, finite element methods, and many other fields. The reconfigurable mesh consists of an array of processors interconnected by a reconfigurable bus system. The bus system can be used to dynamically obtain various interconnection patterns among the processors. Recently, this model has attracted a lot of attention. The main contribution of this paper is to exploit the advantage of the model to obtain efficient algorithms for triangulation of simple polygons and monotone polygons. First we propose a sequential algorithm to divide a simple polygon to some disjoint special monotone polygons, and obtain a constant time algorithm to divide a monotone polygon to disjoint special monotone polygons on an n×n reconfigurable mesh based on it, where n is the number of points of the input polygon. Then we divide the reconfigurable mesh into some submeshes corresponding to the special monotone polygons, and assign each special monotone polygon to one submesh. Because these submeshes can execute the algorithm in parallel and a constant time algorithm to triangulate a special monotone polygon on the reconfigurable mesh has been proposed by Bokka et al., so we get an algorithm to triangulate a monotone polygon in O(1) time on an n×n reconfigurable mesh. By generalizing these algorithms and using a little more processors, we obtain another algorithm to triangulate a simple polygon in O(1) time on an n×n 1+ε reconfigurable mesh, where 0< ε <1 is a constant. To the best of our knowledge, this is the first time that constant time solutions to triangulation of monotone polygons and simple polygons are reported. We also believe that the methods proposed in the paper can be used to design efficient parallel algorithms for other problems in computation geometry. 简单多边形的三角剖分是计算几何的基本问题之一 ,在计算机图形学、地理信息系统及有限元方法等领域有许多重要的应用 .可重构造网孔机器是近几年出现的一种新的并行计算模型 ,由于其特有的灵活性 ,已经有很多领域的基本问题在这种模型上得到了研究 .该文在这种结构上考虑了简单多边形的三角剖分问题 :提出了一个将简单多边形分解为特殊单调多边形的算法 ,并在规模为 n× n的可重构造网孔机器上实现了常数时间分解单调多边形为特殊单调多边形的并行算法 ,基于这个算法得到了一个 n× n的机器上常数时间三角剖分单调多边形的算法 ;将这些算法稍加推广 ,并使用稍多的处理器 ,得到了一个在规模为 n× n1 +ε(0 <ε<1为常数 )的可重构造网孔机器上三角剖分简单多边形的常数时间算法 .就目前了解到的情况而言 ,这分别是第一个在常数时间三角剖分单调多边形和简单多边形的并行算法 相关查询

 CNKI小工具 在英文学术搜索中查有关monotone polygon的内容 在知识搜索中查有关monotone polygon的内容 在数字搜索中查有关monotone polygon的内容 在概念知识元中查有关monotone polygon的内容 在学术趋势中查有关monotone polygon的内容

 CNKI主页 |  设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索 2008 CNKI－中国知网 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社