助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   connect graph 的翻译结果: 查询用时:0.008秒
图标索引 在分类学科中查询
所有学科
自动化技术
更多类别查询

图标索引 历史查询
 

connect graph
相关语句
  连通图
     Let G be a connect graph with order at least 2,k is an positive integer and f is a mapping from V(G)∪E(G) to {1,2,3,…,k}. For all u∈V(G),the set {f(u)}∪{f(uv)|uv∈E(G)} is denoted by C(u).
     设G是阶至少为2的连通图,k是正整数,f是V(G)∪E(G)到{1,2,3,…,k}的映射,对任意u∈V(G),记C(u)={f(u)}∪{f(uv)|uv∈E(G),v∈V(G)}.
短句来源
  “connect graph”译为未确定词的双语例句
     This software has realized a great deal of graphic editing function, and can draw and edit network geographic connect and electrical connect graph on software platform.
     该软件实现了诸多的图形编辑功能,能够在软件图形平台上绘制和编辑电网的地理接线图和电气接线图。
短句来源
     On the basis of electrical connect graph drawn,the generally used method of graphic modeling of power system and the automatically identification of power network topology structure are studied.
     研究了基于所绘电气接线图的电力系统通用的图形化建模方法,以及电网拓扑结构的自动识别.
短句来源
  相似匹配句对
     [s,t]-GRAPH
     [s,t]-图及其Hamilton性
短句来源
     The Gracefulness on Graph B(m,n)
     关于图B(m,n)的优美性
短句来源
     THE CBA CONNECT
     CBA链接
短句来源
     It is simple, reliable to connect.
     连接简单、可靠。
短句来源
     THE CONNECTIVITY OF ARBORESCENCES GRAPH
     有向树图的连通性及其算法
短句来源
查询“connect graph”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


In this paper, we provide a new embedding technique to prove the following formula where _M(G) is the maximum non-orientable genus of a graph G; G is connected with at least one circuit, i.e. it is any connected graph but tree; a_0 and a_1 are the number of vertices and edges in the graph G respectively.Also, we solve the existence problem of non-orientable 2-cell embeddings, i.e. cellular embeddings of a graph constructively at the same time.

本文证明了:对于任何一个有圈连通图G,其不可定向最大亏格为这里,α_0,α_1分别为G的顶点和边的数目.从而,也解决了图的不可定向嵌入的存在性问题.

In this paper, we have obtained not only the necessary and sufficient conditions for the graph which is maximal graph without perfect matching, but also the following sufficient conditions for the three connected graphs with perfect matching:1.Let G be simple,with v(≥4)even,2.Let G be simple,with v(≥4)even and 0<δ

本文得到无完美对集最大简单图的充要条件以及下面三种连通图有完美对集的充分条件: 1.v(≥4)偶数的简单图G,如果 2.v(≥4)偶数,0<δ

A "r-dimensionaI tree" on a finite complex is a generalization of the concept "tree" in the theory of graphs. While Kruskal's method of finding an optimal spanning tree on a connected graph is well known, as an alternative there is another method, called the method of broking cycles. In this paper the latter method is generalized to find a spanning r-dimensional forest (or tree, if it exists) on a n-complex with 1≤r≤n, which starts with an arbitrarily given base of r-cycles and ends in ρ iterations,...

A "r-dimensionaI tree" on a finite complex is a generalization of the concept "tree" in the theory of graphs. While Kruskal's method of finding an optimal spanning tree on a connected graph is well known, as an alternative there is another method, called the method of broking cycles. In this paper the latter method is generalized to find a spanning r-dimensional forest (or tree, if it exists) on a n-complex with 1≤r≤n, which starts with an arbitrarily given base of r-cycles and ends in ρ iterations, where ρ is the maximum number of independent r-cycles(mod 2)of the given complex. In each iteration αr-cycle C in the base is examined and along it α r-dimensional simplex A' of greatest volume is found, and, then the base is changed by substracting C ( mod 2)from each r-cycle in the base which is other than C and contains A'_o The theory and method in the present paper may be viewed as a natural extension of a previous paper of the auther which deals with extreme problems on n-complexes. At the end of the present paper some examples of 2-dimensional trees are given.

本文所讨论的n维复形上的r维最小树问题是图论上的有关概念在n维复形上的推广。在处理时应用了组合拓扑的概念和方法,使得问题成为[1]文所讨论的n维复形上的极值问题中的一个。

 
<< 更多相关文摘    
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关connect graph的内容
在知识搜索中查有关connect graph的内容
在数字搜索中查有关connect graph的内容
在概念知识元中查有关connect graph的内容
在学术趋势中查有关connect graph的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社