助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   optimal feature combinations 的翻译结果: 查询用时:0.006秒
图标索引 在分类学科中查询
所有学科
工业通用技术及设备
自动化技术
更多类别查询

图标索引 历史查询
 

optimal feature combinations
相关语句
  最佳特征影像组合
     Integrated Selection Index Model for Optimal Feature Combinations on Remote Sensing
     最佳特征影像组合综合选择指数的研究
短句来源
     Selection of optimal feature combinations is one of the key procedures for remotely sensed image classification and information abstraction.
     最佳特征影像组合的选择是决定遥感影像信息提取与影像分类效果的关键环节之一 .
短句来源
  相似匹配句对
     Feature:
     本文特色:
短句来源
     Research on Optimal Algorithms of Feature Selection
     特征选择的优化算法研究
短句来源
     The Apcication of K-L Transformation on the Optimal Feature Descriptions of Debris
     K-L变换在磨粒特征参数优化中的应用
短句来源
     Products Feature
     产品专题
短句来源
     It is the optimal pattern.
     这个结果如同自然界生态平衡一样,是相对最优的格局。
短句来源
查询“optimal feature combinations”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


Selection of optimal feature combinations is one of the key procedures for remotely sensed image classification and information abstraction. Based on the analysis of various quantitative methods, the differences and correlationships between them have been discussed. The method of integrated selection index for optimal feature combinations correlationships was proposed. It was proposed that the integrated selection index model constructed could be better than others.

最佳特征影像组合的选择是决定遥感影像信息提取与影像分类效果的关键环节之一 .本文在分析多种定量选择方法的基础上 ,对不同方法的相关性及其存在的差异进行了深入的探讨 ,提出了综合选择指数法 ,经试验初步认为综合选择指数能较好地进行最佳特征影像组合的选择 ,并提出了构建综合选择指数模型的方法与原则

In this paper, the recent research work and relative technologies on content-based image retrieval (CBIR) is introduced. And feature extraction is the key step in the CBIR algorithms. By extracting the low-level features of images, six single features and their combinations respectively are adopted as the input features of the support vector machine for classification. By analyzing the classification performance using various feature combinations, the authors show the...

In this paper, the recent research work and relative technologies on content-based image retrieval (CBIR) is introduced. And feature extraction is the key step in the CBIR algorithms. By extracting the low-level features of images, six single features and their combinations respectively are adopted as the input features of the support vector machine for classification. By analyzing the classification performance using various feature combinations, the authors show the inherent connections among the features and thus the optimal feature combination for CBIR can be derived.

论文介绍了基于内容的图像检索技术(CBIR)的研究现状和相关技术,其中,特征提取是整个图像分类的关键,色彩和纹理都是CBIR常用到的图像视觉特征。文中提取了图像的颜色和纹理等六种特征.将所有的特征向量进行相应的组合,并采用SVM进行分类。最后,作者通过分析不同特征组合的识别效果,揭示了各种特征之间的内在联系,进而得到图像分类中的最佳特征组合。

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关optimal feature combinations的内容
在知识搜索中查有关optimal feature combinations的内容
在数字搜索中查有关optimal feature combinations的内容
在概念知识元中查有关optimal feature combinations的内容
在学术趋势中查有关optimal feature combinations的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社