 全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多   triangle inequality 的翻译结果: 查询用时：0.011秒 在分类学科中查询 所有学科 数学 中等教育 更多类别查询 历史查询  triangle inequality 三角不等式(29)三角形不等式(4)  三角不等式
 On the Triangle Inequality of WWF-SSD 子空间非相似性度量(WWF-SSD)的三角不等式 短句来源 5. Under more ordinary conditions of L and R, we give an equivalent characterization of triangle inequality (iii) in definition of fuzzy metric space. It extends the result obtained by Kaleva and Seikkla  under the condition that L = min, R = max. 5．在L，R较为一般情形下，给出了模糊度量空间定义中三角不等式(ⅲ)的等价刻画，推广了Kaleva和Seikkla在L=min，R=max情形下得到的结果。 短句来源 Using Triangle Inequality to Accelerate TTSAS Cluster Algorithm 基于三角不等式原理的TTSAS聚类加速算法 短句来源 A TRIANGLE INEQUALITY IN E￣n E~n中的一个三角不等式 短句来源 In , YIN Jing-rao gets the triangle inequality about simplex. 在［2］中尹景尧得出关于单纯形的一类三角不等式。 短句来源 更多 三角形不等式
 On the R-r-s Triangle Inequality Containing Angular Parameters 关于R,r与s并含角参数的三角形不等式 短句来源 The Proofs of Two Conjectures Involving Triangle Inequality 两个三角形不等式猜想的证明 短句来源 ABSOLUTE VALUE AND THE TRIANGLE INEQUALITY 绝对值与三角形不等式 短句来源 To establish a triangle inequality with exponent parameter. 建立一个含指数参数的三角形不等式。 短句来源 “triangle inequality”译为未确定词的双语例句
 Approximation algorithms for k-Center problem with aparameterized triangle inequality 满足参数不等式的k-Center问题的近似算法 短句来源 This paper intends to establish a triangle inequality with exponent parameter and generalize Child's inequality ∑ sin B2 sin C2≤34. M. Child不等式 ∑sin B2 sin C2 ≤ 34 . 短句来源 The approximate algorithm for k-Center problem in complete undirected graphs with a parameterized triangle inequality was considered. Assume that for some parameter τ≥12,the distances satisfy the triangle inequality dist(x,y)≤τ(dist(x,z)+dist(z,y)) for every triple of vertices x,y,and z. 考虑了无向完全图中满足参数不等式的k-Center问题,确切来讲,假定有一参数τ满足τ≥12,对于任意3个点x,y和z,都有dist(x,y)≤τ(dist(x,z)+dist(z,y)). 短句来源 ABOUT TWO TYPES OF TRIANGLE INEQUALITY 关于三角形的两类不等式 短句来源 The inverse form about a triangle inequality of distance between center of inscribed circle and center of circumscribed circle 一个三角形心距不等式的逆向 短句来源 更多 查询“triangle inequality”译词为用户自定义的双语例句

我想查看译文中含有：的双语例句  triangle inequality
 Using a generalized Cauchy functional equation we show that some well-known characterizations of inner product spaces, such as those of Jordan-von Neumann, Johnson, and Rassias, can be proved without use of the triangle inequality. A discrete norm on an Abelian groupA is a non-negative function ‖ · ‖A → ? which satisfies the triangle inequality, is homogenous with respect to scaling ofA by ? and is bounded away from 0 onA/{0}. The notion of a random semi-metric space provides an alternate approach to the study of probabilistic metric spaces from the standpoint of random variables instead of distribution functions and permits a new investigation of the triangle inequality. The probability of the triangle inequality in probabilistic metric squares Cumulative transition density functions of stationary Markov chains are shown to sausfy the Menger triangle inequality under thet-normT = Prod. 更多 The aim of this paper is to study the topological properies of probabilistic metric spaces. To do it the λ-topologies on such spaces are introduced by the authors. Let(E F)be a PM-space(i.e.a probabilistic metric space).The λ-topology (λ≥0) Jλ on E is defined as the family of certain subsets of E. {AE: (x∈E) ((x∈A) (ε>0) (Bxλ(ε)A))} .The main results obtained by the authors are the following.1°.If(E,F)is a PM-space and F takes values in D0 = {f∈D:(f-1 (1)≠φ) &(f(inf {t∈R:f(t) =1})<1)}, then the 0-topology, J0,... The aim of this paper is to study the topological properies of probabilistic metric spaces. To do it the λ-topologies on such spaces are introduced by the authors. Let(E F)be a PM-space(i.e.a probabilistic metric space).The λ-topology (λ≥0) Jλ on E is defined as the family of certain subsets of E. {AE: (x∈E) ((x∈A) (ε>0) (Bxλ(ε)A))} .The main results obtained by the authors are the following.1°.If(E,F)is a PM-space and F takes values in D0 = {f∈D:(f-1 (1)≠φ) &(f(inf {t∈R:f(t) =1})<1)}, then the 0-topology, J0, on E is metrizable; 2°.If(E,F)is a PM-space and F satisfies λ-triangle inequality (λ>0): ( x,y,z∈E) (t1, t2∈R)(((Fx,v(t1)> 1 -λ)&(Fy,z(t2)> 1 -λ))(Fx,z(t1 + t2)>1-λ)), then the λ-topology Jλ on E is metrizable;3°.If (E,F,△) is a Menger space and satisfies sup △(t, t) = 1 , then there existsa probabilistic metric function G:E×E→D0 such that the topologies on Menger Spaces(E, F,△)and(E,G, △)coincide,and J(F) =J0(G) =Jλ(G)for any λ∈(0,1). 本文主要研究概率度量空间的拓扑性质与拓扑结构。在一般的概率度量空间上给出了λ—拓扑,证明了下述主要结论: 1.若PM—空间(E,F)之E取位于D_0则(F,J)可度量化。 2.若PM—空间(E,F)之F满足λ—不等式(λ>0),则(E.J_λ)可度量化。 3.若Menger空间(E,F,Δ)之Δ满足(?)1Δ(t,t)=1,则存在E上的概率度量G:E×E→D使得(E,F,Δ)与(E,G,Δ)上的拓扑一致,且对任何λ∈[0,1]有J(F)=J(G)=J_λ(G)。 In this paper it is shown that the basic inequality G(a)≤A(a),Cauchy inequality,Tchebychef inequality,Holder inequality,Lyapunov inequality,triangle inequality and Minkowski inequality are all equivalent to the simple proposition that a~2≥0 for every a∈R(set of real number),provided the proposition that the closure of the set of rational number equals R is known. 本文在实数集合的紧致性为已知的前提下,证明算术平均值与几何平均值不等式,Cauchy不等式,不等式,Holder不等式,不等式,三角不等式和Minkowski不等式之间的互相等价性,而旦它们都等价于一个实数的平方不小于零。 This paper presents a parallel heuristic algorithm for travelling salesman problem satisfying triangle inequality. This algorithm uses O(n2/log2n) processors and O(log2n)time on SIMD CREWPRAM, where n is the number of given cities, so it is optimal. 本文给出了满足三角不等式的货郎担问题的并行启发式算法，在ＳＩＭＤＣＲＥＷＰＲＡＭ并行机上该算法使用Ｏ（ｎ２／ｌｏｇ２ｎ）台处理器需Ｏ（ｌｏｇ２ｎ）时间，这里ｎ是给定城市的个数，因而该并行算法是最优的。 << 更多相关文摘 相关查询

 CNKI小工具 在英文学术搜索中查有关triangle inequality的内容 在知识搜索中查有关triangle inequality的内容 在数字搜索中查有关triangle inequality的内容 在概念知识元中查有关triangle inequality的内容 在学术趋势中查有关triangle inequality的内容

 CNKI主页 |  设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索 2008 CNKI－中国知网 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社