助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   the nilpotent class 的翻译结果: 查询用时:0.185秒
图标索引 在分类学科中查询
所有学科
数学
更多类别查询

图标索引 历史查询
 

the nilpotent class
相关语句
  幂零类
     On the Nilpotent Class and Derived Subgroup of Finite C~*(p)-p-Groups
     关于有限C~*(p)-p-群的幂零类及导群
短句来源
     Because the nilpotent class of Dedekind groups is at best 2, we mainly study nilpotent structures of S(A*, C*)-groups in section 3. Since the locally nilpotent S*(p)-group is nilpotent(see property 3.2),we maily study the locally nilpotent C*(p)-group in the following.
     而Dedekind群的幂零类最多为2,在第三节主要研究局部幂零条件下的S~*(A~*,C~*)-群的幂零结构。 由于局部幂零的S~*(p)-群是幂零的(见性质3.2),因此下面主要研究C~*(p)-群。
短句来源
     Depending on [1], for finite p-group we dually obtain the nilpotent class of S*(A*, C*)-groups and the structure of their derived subgroup.
     首先,在有限p-群的条件下对偶于文[1],得到了S~*(A~*,C~*)-群的幂零类及导群的结构。
短句来源
     In this paper, by investigating finite C~*(p)-p-groups the authors have obtained that the nilpotent class of C~*(p)-p-groups is at most 3 and their derived subgroup is elementary abelian p-group.
     在有限p群条件下,对偶研究S(A,C)群,证明了C(p)p群的幂零类不超过3,其导群是初等阿贝尔群.
短句来源
  “the nilpotent class”译为未确定词的双语例句
     Theorem 3.1 If G is C*(p)-group and the exponent of G is p,then the nilpotent class of G is at most 2 and G = p.
     定理3.1 若G是C~*(p)-群且exp(G)=p,则G的类最多为2且∣G'∣=p。
短句来源
     Theorem 3.2 If G is C*(p)-group,then:(l) the nilpotent class of G is at most 2;
     定理3.2 若G是C~*(p)-群,则(1)G的类最多为3;
短句来源
     Theorem 3.4 If G is C*(p)-group and p>3,then the nilpotent class of G is at most 2.Theorem 3.6 Let G be C*(p)-group.
     定理 3.4 若 G是 C”O)-群且尸巧,则 CI(k 2.
短句来源
     If p>2 and the nilpotent class of G is 3,then/?
     定理3.6 设G是C”o卜群,若P>2且CI(G 3,则P-3且。P(户9.
短句来源
     =3 and the exponent of G is 3.Theorem 3.9 If G is locally finite p-group and C*(p)-group,then the nilpotent class of G is at most 3 and the derived subgroup of G is elementary abelian p-group.
     定理39 若局部有限尸-群G是C“卜群,则G的类最多为3且G’是初等阿贝尔p-群.
短句来源
更多       
  相似匹配句对
     G/N p -nilpotent.
     G,G/N p-幂零.
短句来源
     p-QUASI-NORMAL AND p-NILPOTENT
     p-拟正规与p-幂零
短句来源
     ON THE NILPOTENT REGULAR p-GROUP
     关于正则p-群的幂零类
短句来源
     ON THE CMARACTERIZATION OF NILPOTENT GROUPS
     关于幂零群的特征
短句来源
     Two Classes of Nilpotent n-Lie Algebras
     两类幂零的n-Lie代数
短句来源
查询“the nilpotent class”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  the nilpotent class
Nonabelian K-theory: The nilpotent class of K1 and general stability
      
We show that the nilpotent class of any finite group which has only two conjugacy lengths is at most 3.
      


Let G be a group, one says that G is an S~*(A~*, C~*)-group, if each(abelian, or cyclic)subgroup H of G satisfies that |H~G∶H|<∞; further, one says that G is an S~*(n)(A~*(n), C~*(n))-group, if each(abelian, or cyclic)subgroup H of G satisfies that |H~G∶H|≤n. In this paper, by investigating finite C~*(p)-p-groups the authors have obtained that the nilpotent class of C~*(p)-p-groups is at most 3 and their derived subgroup is elementary abelian p-group.

若对群G中任意子群(阿贝尔子群或循环子群)H有|HG∶H|<∞,则称群G是S(A,C)群.若|HG∶H|≤n,则称群G是S(n)(A(n),C(n))群.在有限p群条件下,对偶研究S(A,C)群,证明了C(p)p群的幂零类不超过3,其导群是初等阿贝尔群.

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关the nilpotent class的内容
在知识搜索中查有关the nilpotent class的内容
在数字搜索中查有关the nilpotent class的内容
在概念知识元中查有关the nilpotent class的内容
在学术趋势中查有关the nilpotent class的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社