助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   valid inequality 的翻译结果: 查询用时:0.007秒
图标索引 在分类学科中查询
所有学科
数学
更多类别查询

图标索引 历史查询
 

valid inequality
相关语句
  “valid inequality”译为未确定词的双语例句
     One of the most important questions in inequality proof was discussed, i.e.,using the valid inequality to prove an inequality.
     论述了不等式证明中的重要问题之一,利用已成立的不等式证明不等式的问题.
短句来源
  相似匹配句对
     N. inequality.
     N不等式及Ambrosetti的山路引理证明了方程存在非平凡解.
短句来源
     Inequality
     不等式(之3)
短句来源
     Wells are valid.
     Wells的算法在误差范围内的正确性。
短句来源
     (3) Valid.
     (3)有效性。
短句来源
查询“valid inequality”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
为了更好的帮助您理解掌握查询词或其译词在地道英语中的实际用法,我们为您准备了出自英文原文的大量英语例句,供您参考。
  valid inequality
We investigate lifting, i.e., the process of taking a valid inequality for a polyhedron and extending it to a valid inequality in a higher dimensional space.
      
The former technique relies on a separation algorithm, which, given a fractional solution, tries to produce a violated valid inequality.
      
Given the integer polyhedronPt:= conv{x ∈?n:Ax?b}, whereA ∈?m × n andb ∈?m, aChvátal-Gomory (CG)cut is a valid inequality forP1 of the type λτAx??λτb? for some λ∈?+m such that λτA∈?n .
      
Here it is proved that, for every positive integern, there exists a graph for which the dominant has an essential valid inequality whose coefficient-set includes the firstn positive integers.
      
Second, the procedure is exhaustive in the sense that it accounts for all the facets (valid inequalities) which are liftings of a given lower dimensional facet (valid inequality).
      


The valid inequalities is applied to surrogate duality in integer programs.The idea for closing surrogate dual gap is presented.Numerical example shows that the methods given in the paper is effecitive on stronger bounding properties.

将有效不等式的概念应用于整数线性规划的代理对偶问题 ,给出弥合整数线性规划的代理对偶间隙的方法 .数值例子表明所给出的方法在改进定界结果方面是有效的 .

One of the most important questions in inequality proof was discussed, i.e.,using the valid inequality to prove an inequality.When the Jonson inequality is used to prove the related inequalities,the key lies in constructing a convex upperward(downward) function in combination with it properties and ingenious uses of the Jonson inequality to complete the proof.It is proved to be the basic method in proving an inequality.This method can lead to simplification of the proof and...

One of the most important questions in inequality proof was discussed, i.e.,using the valid inequality to prove an inequality.When the Jonson inequality is used to prove the related inequalities,the key lies in constructing a convex upperward(downward) function in combination with it properties and ingenious uses of the Jonson inequality to complete the proof.It is proved to be the basic method in proving an inequality.This method can lead to simplification of the proof and result in an effect of achieving twice the result with half the effort.

论述了不等式证明中的重要问题之一,利用已成立的不等式证明不等式的问题.在运用Jonson不等式证明有关不等式的问题时,结合凸函数的特征性,通过构造一个上(下)凸函数,并使用Jonson不等式完成对问题的证明,实例证明,利用此方法可达到简化不等式证明的目的,有事半功倍的效果.

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关valid inequality的内容
在知识搜索中查有关valid inequality的内容
在数字搜索中查有关valid inequality的内容
在概念知识元中查有关valid inequality的内容
在学术趋势中查有关valid inequality的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社