助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   image description model 的翻译结果: 查询用时:0.007秒
图标索引 在分类学科中查询
所有学科
电信技术
计算机软件及计算机应用
更多类别查询

图标索引 历史查询
 

image description model
相关语句
  图像描述模型
     In this paper,an new method for progressive image content understanding based on multi level image description model is proposed,aiming at overcoming the considerable gap between low level image features and high level image semantics in the field of image retrieval.
     针对目前基于内容的图像检索技术中低级特征无法准确全面地描述高级语义的问题 ,本文提出了一种基于多级图像描述模型的渐进式图像内容理解 .
短句来源
     In this image description model, image contents could be analyzed and represented through different levels and the transition from low-level features to high-level semantics is thus achieved.
     该图像描述模型通过在不同层次上对图像内容进行分析和描述,实现了从低级特征到高级语义的过渡。
短句来源
  “image description model”译为未确定词的双语例句
     Progressive Image Content Understanding Based on Multi-Level Image Description Model
     基于多级描述模型的渐进式图像内容理解
短句来源
  相似匹配句对
     Study on Image Description Methods
     图像描述方法的研究
短句来源
     image;
     企业形象研究;
短句来源
     Multiple Description Coding for Image
     图像的多描述编码
短句来源
     The image
     贫验结果和模拟象符合的较好。
短句来源
     The description of E.
     decemflorum ,E . wightianum ,E .
短句来源
查询“image description model”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


In this paper,an new method for progressive image content understanding based on multi level image description model is proposed,aiming at overcoming the considerable gap between low level image features and high level image semantics in the field of image retrieval.In the proposed image content description model,image contents are analyzed and extracted in different levels,reaching at omnidirectional image content description.In addition,the transition...

In this paper,an new method for progressive image content understanding based on multi level image description model is proposed,aiming at overcoming the considerable gap between low level image features and high level image semantics in the field of image retrieval.In the proposed image content description model,image contents are analyzed and extracted in different levels,reaching at omnidirectional image content description.In addition,the transition from low level to high level is exactly a progressive image understanding.In this paper,a new algorithm for object understanding is proposed,which is based on pre knowledge and is context driven,in order to extract image semantics.As a practical instance,discussion about combining the proposed method into content based image retrieval is also given.

针对目前基于内容的图像检索技术中低级特征无法准确全面地描述高级语义的问题 ,本文提出了一种基于多级图像描述模型的渐进式图像内容理解 .该图像描述模型在不同层次上对图像内容进行分析和提取 ,实现了图像内容的全方位描述 ,从底层向高层的过渡是渐进式的图像理解过程 .特别是从视觉感知层到目标层 ,体现了图像低级特征与高级语义之间的过渡 .本文给出了一种基于先验知识的上下文驱动的目标理解算法 ,实现了图像语义的提取 .作为一个应用实例 ,本文给出了以上方法在基于内容的图像检索技术中的具体应用

Most existing content-based image retrieval systems using low-level features that could not describe high-level semantics thoroughly and accurately. In this paper, a novel system for content-based image retrieval is designed and created, which combines image semantics based on a multi-level model for image description. In this image description model, image contents could be analyzed and represented through different levels and the transition from low-level features to high-level semantics is thus...

Most existing content-based image retrieval systems using low-level features that could not describe high-level semantics thoroughly and accurately. In this paper, a novel system for content-based image retrieval is designed and created, which combines image semantics based on a multi-level model for image description. In this image description model, image contents could be analyzed and represented through different levels and the transition from low-level features to high-level semantics is thus achieved. Corresponding querying mechanism and feedback are also proposed based on this image model. Aiming at object semantics in image, this querying mechanism is much closer to human beings' understanding of image contents so that it provides a convenient and effective querying procedure. The feedback used in the system is a self-adaptive relevance feedback based on object descriptions, it permits to propose different querying schemes according to the different demands raised by various users, and thus optimal results could be refined.

为克服当前基于内容的图像检索技术中低级特征无法准确全面地描述高级语义的问题,该文设计和实现了一个基于目标高级语义特征的检索系统。该系统利用了一个多级图像描述模型将语义特征结合到图像检索技术中。该图像描述模型通过在不同层次上对图像内容进行分析和描述,实现了从低级特征到高级语义的过渡。在此模型的基础上还研究了相应的检索机制和反馈技术。该系统的检索机制定位于图像中目标的语义内容,与传统的图像检索系统相比更接近人对图像内容的理解,从而使检索过程更简便,检索效率也得到很大提高。基于目标描述的自适应相关反馈可针对不同用户的不同需求给出相应的检索方案,从而使检索结果得到优化。

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关image description model的内容
在知识搜索中查有关image description model的内容
在数字搜索中查有关image description model的内容
在概念知识元中查有关image description model的内容
在学术趋势中查有关image description model的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社