助手标题  
全文文献 工具书 数字 学术定义 翻译助手 学术趋势 更多
查询帮助
意见反馈
   fast-sampled data 的翻译结果: 查询用时:0.006秒
图标索引 在分类学科中查询
所有学科
计算机软件及计算机应用
更多类别查询

图标索引 历史查询
 

fast-sampled data
相关语句
  快速采样数据
     A Least Square Algorithm for Modelimg Fast-Sampled Data
     快速采样数据建模的最小二乘算法
短句来源
查询“fast-sampled data”译词为用户自定义的双语例句

    我想查看译文中含有:的双语例句
例句
没有找到相关例句


Fast-sampled data processing is becoming ever-increasingly important in modern ystemapplications,such as wideband communication and digital feedback control.The convention-al AR model is not suitable for fast-sampled data modeling. It has been proved that when thesampling interval is short enough,the estimates of the parameters in an AR model are de-pendent only on the order of the model and have nothing to do with the characteristics of thecorresponding continuous signal system. In order to overcome ...

Fast-sampled data processing is becoming ever-increasingly important in modern ystemapplications,such as wideband communication and digital feedback control.The convention-al AR model is not suitable for fast-sampled data modeling. It has been proved that when thesampling interval is short enough,the estimates of the parameters in an AR model are de-pendent only on the order of the model and have nothing to do with the characteristics of thecorresponding continuous signal system. In order to overcome this shortcoming,an alterna-tive model based on incremental difference operator as well as the recursive least squaremethod is proposed.The relation between the model and the continuous signal model is dis-cussed.It is concluded that the parameters of the discrete model are a good approximation ofthose of the continuous signal model when the sampling interval is short enough.Numericalsimulation shows that the model proposed is more useful than the AR model.

由于传统的AR模型不适于快速采样数据的建模,提出了基于增量差分算子建模的递推最小二乘算法,讨论了这种模型与相应连续模型的关系.数据仿真表明这种模型较之于AR模型有较好的适用性.

 
图标索引 相关查询

 


 
CNKI小工具
在英文学术搜索中查有关fast-sampled data的内容
在知识搜索中查有关fast-sampled data的内容
在数字搜索中查有关fast-sampled data的内容
在概念知识元中查有关fast-sampled data的内容
在学术趋势中查有关fast-sampled data的内容
 
 

CNKI主页设CNKI翻译助手为主页 | 收藏CNKI翻译助手 | 广告服务 | 英文学术搜索
版权图标  2008 CNKI-中国知网
京ICP证040431号 互联网出版许可证 新出网证(京)字008号
北京市公安局海淀分局 备案号:110 1081725
版权图标 2008中国知网(cnki) 中国学术期刊(光盘版)电子杂志社